首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1086篇
  免费   191篇
  国内免费   1篇
  1278篇
  2021年   10篇
  2016年   10篇
  2015年   15篇
  2014年   30篇
  2013年   42篇
  2012年   45篇
  2011年   31篇
  2010年   32篇
  2009年   23篇
  2008年   42篇
  2007年   28篇
  2006年   45篇
  2005年   28篇
  2004年   29篇
  2003年   46篇
  2002年   42篇
  2001年   47篇
  2000年   38篇
  1999年   48篇
  1998年   27篇
  1997年   27篇
  1996年   19篇
  1995年   14篇
  1994年   17篇
  1993年   10篇
  1992年   35篇
  1991年   19篇
  1990年   33篇
  1989年   27篇
  1988年   20篇
  1987年   21篇
  1986年   15篇
  1985年   23篇
  1984年   22篇
  1983年   16篇
  1982年   13篇
  1981年   12篇
  1979年   14篇
  1978年   21篇
  1977年   11篇
  1976年   23篇
  1975年   25篇
  1974年   14篇
  1973年   14篇
  1972年   13篇
  1971年   13篇
  1970年   10篇
  1968年   14篇
  1967年   12篇
  1966年   15篇
排序方式: 共有1278条查询结果,搜索用时 0 毫秒
241.
Recent work has shown that much of the missing heritability of complex traits can be resolved by estimates of heritability explained by all genotyped SNPs. However, it is currently unknown how much heritability is missing due to poor tagging or additional causal variants at known GWAS loci. Here, we use variance components to quantify the heritability explained by all SNPs at known GWAS loci in nine diseases from WTCCC1 and WTCCC2. After accounting for expectation, we observed all SNPs at known GWAS loci to explain more heritability than GWAS-associated SNPs on average (). For some diseases, this increase was individually significant: for Multiple Sclerosis (MS) () and for Crohn''s Disease (CD) (); all analyses of autoimmune diseases excluded the well-studied MHC region. Additionally, we found that GWAS loci from other related traits also explained significant heritability. The union of all autoimmune disease loci explained more MS heritability than known MS SNPs () and more CD heritability than known CD SNPs (), with an analogous increase for all autoimmune diseases analyzed. We also observed significant increases in an analysis of Rheumatoid Arthritis (RA) samples typed on ImmunoChip, with more heritability from all SNPs at GWAS loci () and more heritability from all autoimmune disease loci () compared to known RA SNPs (including those identified in this cohort). Our methods adjust for LD between SNPs, which can bias standard estimates of heritability from SNPs even if all causal variants are typed. By comparing adjusted estimates, we hypothesize that the genome-wide distribution of causal variants is enriched for low-frequency alleles, but that causal variants at known GWAS loci are skewed towards common alleles. These findings have important ramifications for fine-mapping study design and our understanding of complex disease architecture.  相似文献   
242.
243.
Management of soils on areas subjected to planned disturbance, such as surface mine sites, is crucial to post‐disturbance restoration. We conducted a study to determine which of the following two topsoil management strategies resulted in less of a negative impact to the soil and vegetation resources and better promoted site restoration on in situ uranium wellfields: (1) removal of topsoil from an entire wellfield and stockpiling until mining activity is complete; or (2) leaving the majority of topsoil on the wellfield and allowing it to be exposed to disturbance associated with wellfield development activity (primarily heavy vehicle traffic). Our study compared selected soil properties from areas on in situ uranium wellfields managed by the two strategies stated above and with adjacent, relatively undisturbed sites. Vegetation reestablishment was assessed on sites where topsoil was left in place. Results indicated that levels of vehicular traffic on wellfields did not cause significant soil compaction and that removal and stockpiling of topsoil results in more negative impacts than disturbance inflicted when topsoil is left in place.  相似文献   
244.
Chi promotes Rec-mediated recombination between phage lambda DNA and the homologous plasmid lambda dv. In the absence of Chi, some of the interactions splice lambda dv into lambda, whereas others patch information from lambda dv into lambda. When Chi is in the phage DNA, splices and patches are increased in frequency by the same factor. This result strengthens the analogy between Chi and recombination-promoting elements in fungi. It also rules out one model for the previously reported orientation dependence of Chi phenotype.  相似文献   
245.
Abstract Twenty-five isolates of dissimilatory sulfate-reducing bacteria were clustered based on similarity analysis of their phospholipid ester-linked fatty acids (PLFA). Of these, 22 showed that phylogenetic relationships based on the sequence similarity of their 16S rRNA directly paralleled the PLFA relationships. Desulfobacter latus and Desulfobacter curvatus grouped with the other Desulfobacter spp. by 16S rRNA comparison but not with the PLFA analysis as they contained significantly more monoenoic PLFA than the others. Similarly, Desulfovibrio africanus clustered with the Desulfovibrio spp. by 16S rRNA but not with them when analyzed by PLFA patterns because of higher monoenoic PLFA content. Otherwise, clustering obtained with either analysis was essentially congruent. The relationships defined by PLFA patterns appeared robust to shifts in nutrients and terminal electron acceptors. Additional analyses utilizing the lipopolysaccharide-lipid A hydroxy fatty acid patterns appeared not to shift the relationships based on PLFA significantly except when completely absent, as in Gram-positive bacteria. Phylogenetic relationships between isolates defined by 16S rRNA sequence divergence represent a selection clearly different from the multi-enzyme activities responsible for the PLFA patterns. Determination of bacterial relationships based on different selective pressures for various cellular components provides more clues to evolutionary history leading to a more rational nomenclature.  相似文献   
246.
247.
The microbial population structure and function of natural anaerobic communities maintained in laboratory fixed-bed biofilm reactors were tracked before and after a major perturbation, which involved the addition of sulfate to the influent of a reactor that had previously been fed only glucose (methanogenic), while sulfate was withheld from a reactor that had been fed both glucose and sulfate (sulfidogenic). The population structure, determined by using phylogenetically based oligonucleotide probes for methanogens and sulfate-reducing bacteria, was linked to the functional performance of the biofilm reactors. Before the perturbation, the methanogenic reactor contained up to 25% methanogens as well as 15% sulfate-reducing bacteria, even though sulfate was not present in the influent of this reactor. Methanobacteriales and Desulfovibrio spp. were the most abundant methanogens and sulfate-reducing bacteria, respectively. The presence of sulfate-reducing bacteria (primarily Desulfovibrio spp. and Desulfobacterium spp.) in the absence of sulfate may be explained by their ability to function as proton-reducing acetogens and/or fermenters. Sulfate reduction began immediately following the addition of sulfate consistent with the presence of significant levels of sulfate-reducing bacteria in the methanogenic reactor, and levels of sulfate-reducing bacteria increased to a new steady-state level of 30 to 40%; coincidentally, effluent acetate concentrations decreased. Notably, some sulfate-reducing bacteria (Desulfococcus/Desulfosarcina/Desulfobotulus group) were more competitive without sulfate. Methane production decreased immediately following the addition of sulfate; this was later followed by a decrease in the relative concentration of methanogens, which reached a new steady-state level of approximately 8%. The changeover to sulfate-free medium in the sulfidogenic reactor did not cause a rapid shift to methanogenesis. Methane production and a substantial increase in the levels of methanogens were observed only after approximately 50 days following the perturbation.  相似文献   
248.
Further Evidence for Polarity Mutations in Bacteriophage T4   总被引:3,自引:2,他引:3       下载免费PDF全文
  相似文献   
249.
Deleted in malignant brain tumours 1 (DMBT1) codes for a approximately 340kDa glycoprotein with highly repetitive scavenger receptor cysteine-rich (SRCR) domains. DMBT1 was implicated in cancer, defence against viral and bacterial infections, and differentiation of epithelial cells. Recombinant expression and purification of DMBT1 is an essential step for systematic standardized functional research and towards the evaluation of its therapeutical potential. So far, DMBT1 is obtained from natural sources such as bronchioalveolar lavage or saliva, resulting in time consuming sample collection, low yields, and protein preparations which may substantially vary due to differential processing and genetic polymorphism, all of which impedes functional research on DMBT1. Cloning of DMBT1 cDNAs is hampered because of the size and the 13 highly homologous SRCR exons. In this study, we report on the setup of a vector system that facilitates cloning of DMBT1 variants. We demonstrate applicability of the vector system by expression of the largest DMBT1 variant in a tetracycline-inducible mammalian expression system using the Chinese hamster ovary cell line. Yields up to 30 mg rDMBT1 per litre of cell culture supernatant could be achieved with an optimized production procedure. By harnessing the specific bacteria-binding property of DMBT1 we established an affinity purification procedure which allows the isolation of more than 3 mg rDMBT1 with a purity of about 95%. Although the glycosylation moieties of rDMBT1 are different from DMBT1(SAG) isolated from saliva, we demonstrate that rDMBT1 is functionally active in aggregating Gram-positive and Gram-negative bacteria and binding to C1q and lactoferrin, which represent two known endogenous DMBT1 ligands.  相似文献   
250.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号