首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   562篇
  免费   78篇
  国内免费   8篇
  2015年   10篇
  2013年   11篇
  2012年   13篇
  2011年   15篇
  2010年   12篇
  2009年   19篇
  2008年   25篇
  2007年   13篇
  2006年   18篇
  2005年   6篇
  2004年   12篇
  2003年   9篇
  2001年   11篇
  2000年   11篇
  1999年   12篇
  1998年   9篇
  1997年   12篇
  1996年   16篇
  1995年   6篇
  1994年   10篇
  1992年   13篇
  1991年   6篇
  1988年   9篇
  1987年   7篇
  1986年   9篇
  1985年   8篇
  1984年   9篇
  1983年   13篇
  1981年   7篇
  1980年   6篇
  1979年   9篇
  1978年   6篇
  1976年   7篇
  1975年   6篇
  1974年   12篇
  1973年   6篇
  1972年   7篇
  1971年   12篇
  1969年   6篇
  1968年   6篇
  1959年   7篇
  1958年   23篇
  1957年   26篇
  1956年   26篇
  1955年   22篇
  1954年   22篇
  1953年   13篇
  1952年   13篇
  1951年   10篇
  1950年   9篇
排序方式: 共有648条查询结果,搜索用时 125 毫秒
121.
Cross-links between cellulose microfibrils and xyloglucan (XG) molecules play a major role in defining the structural properties of plant cell walls and the regulation of growth and development of dicotyledonous plants. How these cross-links are established and how they are regulated has yet to be determined. In a previous study, preliminary data were presented which suggested that the different sidechains of XG may play a role in controlling cellulose microfibril-XG interactions. In this study, this question is addressed directly by analyzing to what extent the different sidechains of pea cell wall XG and nasturtium seed storage XG affect their binding to cellulose microfibrils. Of particular importance to this study are the chemical data indicating that pea XG possesses a trisaccharide sidechain, which is not found in nasturtium XG. To this end, conformational dynamic simulations have been used to predict whether oligosaccharides representative of pea and nasturtium XG can adopt a hypothesized cellulose-binding conformation and which of these XGs exhibits a preferential ability to bind cellulose. Extensive analysis of the conformational forms populated during 300 K and high-temperature Monte Carlo simulations established that a planar, sterically accessible, glucan backbone is essential for optimal cellulose-binding. For the trisaccharide sidechain-containing oligosaccharide as found in pea XG, sidechain orientation appeared to regulate the gradual acquisition of this hypothesized cellulose binding conformation. Thus, conformational forms were identified that included the twisted backbone (non-planar) putative solution form of XG, forms in which the trisaccharide sidechain orientation enables increased backbone planarity and steric accessibility, and finally a planar, sterically accessible, backbone. By applying these conformational requirements for cellulose binding, it has been determined that pea XG possesses a two- to threefold occurrence of the cellulose binding conformation than nasturtium XG. Based on this finding, it was predicted that pea XG would bind to cellulose at a higher rate than nasturtium XG. In vitro binding assays showed that pea XG-avicel binding does indeed occur at a twofold higher rate than nasturtium XG-avicel binding. The enhanced ability of pea cell wall XG over nasturtium seed storage XG to associate with cellulose is consistent with a structural role of the former during epicotyl growth where efficient association with cellulose is a requirement. In contrast, the relatively low ability of nasturtium XG to bind cellulose is consistent with the need to enhance the accessibility of this polymer to glycanases during germination. These findings suggest potential roles for XG sidechain substitution, enabling XG to function in a variety of different biological contexts.  相似文献   
122.
123.
124.
125.
126.
127.
128.
129.
White clover (Trifolium repens) was germinated and grown in microgravity aboard the Space Shuttle (STS-60, 1994; STS-63, 1995), on Earth in stationary racks and in a slow-rotating two-axis clinostat. The objective of this study was to determine if normal root cap development and early plant gravity responses were dependent on gravitational cues. Seedlings were germinated in space and chemically fixed in orbit after 21, 40, and 72 h. Seedlings 96 h old were returned viable to earth. Germination and total seedling length were not dependent on gravity treatment. In space-flown seedlings, the number of cell stories in the root cap and the geometry of central columella cells did not differ from those of the Earth-grown seedlings. The root cap structure of clinorotated plants appeared similar to that of seedlings from microgravity, with the exception of three-day rotated plants, which displayed significant cellular damage in the columella region. Nuclear polarity did not depend on gravity; however, the positions of amyloplasts in the central columella cells were dependent on both the gravity treatment and the age of the seedlings. Seedlings from space, returned viable to earth, responded to horizontal stimulation as did 1 g controls, but seedlings rotated on the clinostat for the same duration had a reduced curvature response. This study demonstrates that initial root cap development is insensitive to either chronic clinorotation or microgravity. Soon after differentiation, however, clinorotation leads to loss of normal root cap structure and plant graviresponse while microgravity does not.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号