首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   884篇
  免费   81篇
  965篇
  2024年   2篇
  2023年   9篇
  2022年   12篇
  2021年   22篇
  2020年   12篇
  2019年   23篇
  2018年   8篇
  2017年   18篇
  2016年   31篇
  2015年   43篇
  2014年   40篇
  2013年   68篇
  2012年   66篇
  2011年   54篇
  2010年   45篇
  2009年   32篇
  2008年   60篇
  2007年   64篇
  2006年   59篇
  2005年   69篇
  2004年   48篇
  2003年   40篇
  2002年   27篇
  2001年   11篇
  2000年   4篇
  1999年   14篇
  1998年   14篇
  1997年   7篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1982年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   5篇
  1972年   2篇
  1969年   2篇
  1964年   1篇
  1961年   1篇
  1955年   1篇
  1954年   1篇
  1952年   1篇
  1949年   1篇
  1947年   1篇
排序方式: 共有965条查询结果,搜索用时 15 毫秒
111.
112.
113.
Polycystic kidney disease (PKD) is a ciliopathy characterized by renal cysts and hypertension. These changes are presumably due to altered fluid and electrolyte transport in the collecting duct (CD). This is the site where vasopressin (AVP) stimulates vasopressin-2 receptor (V2R)-mediated aquaporin-2 (AQP2) insertion into the apical membrane. Since cysts frequently occur in the CD, we studied V2R and AQP2 trafficking and function in CD cell lines with stunted and normal cilia [cilia (-), cilia (+)] derived from the orpk mouse (hypomorph of the Tg737/Ift88 gene). Interestingly, only cilia (-) cells grown on culture dishes formed domes after apical AVP treatment. This observation led to our hypothesis that V2R mislocalizes to the apical membrane in the absence of a full-length cilium. Immunofluorescence indicated that AQP2 localizes to cilia and in a subapical compartment in cilia (+) cells, but AQP2 levels were elevated in both apical and basolateral membranes in cilia (-) cells after apical AVP treatment. Western blot analysis revealed V2R and glycosylated AQP2 in biotinylated apical membranes of cilia (-) but not in cilia (+) cells. In addition, apical V2R was functional upon apical desmopressin (DDAVP) treatment by demonstrating increased cAMP, water transport, and benzamil-sensitive equivalent short-circuit current (I(sc)) in cilia (-) cells but not in cilia (+) cells. Moreover, pretreatment with a PKA inhibitor abolished DDAVP stimulation of I(sc) in cilia (-) cells. Thus we propose that structural or functional loss of cilia leads to abnormal trafficking of AQP2/V2R leading to enhanced salt and water absorption. Whether such apical localization contributes to enhanced fluid retention and hypertension in PKD remains to be determined.  相似文献   
114.
Hepatitis C virus (HCV) infection is sensed in the host cell by the cytosolic pathogen recognition receptor RIG-I. RIG-I signaling is propagated through its signaling adaptor protein MAVS to drive activation of innate immunity. However, HCV blocks RIG-I signaling through viral NS3/4A protease cleavage of MAVS on the mitochondrion-associated endoplasmic reticulum (ER) membrane (MAM). The multifunctional HCV NS3/4A serine protease is associated with intracellular membranes, including the MAM, through membrane-targeting domains within NS4A and also at the amphipathic helix α(0) of NS3. The serine protease domain of NS3 is required for both cleavage of MAVS, a tail-anchored membrane protein, and processing the HCV polyprotein. Here, we show that hydrophobic amino acids in the NS3 helix α(0) are required for selective cleavage of membrane-anchored portions of the HCV polyprotein and for cleavage of MAVS for control of RIG-I pathway signaling of innate immunity. Further, we found that the hydrophobic composition of NS3 helix α(0) is essential to establish HCV replication and infection. Alanine substitution of individual hydrophobic amino acids in the NS3 helix α(0) impaired HCV RNA replication in cells with a functional RIG-I pathway, but viral RNA replication was rescued in cells lacking RIG-I signaling. Therefore, the hydrophobic amphipathic helix α(0) of NS3 is required for NS3/4A control of RIG-I signaling and HCV replication by directing the membrane targeting of both viral and cellular substrates.  相似文献   
115.
Hendra virus is a highly pathogenic paramyxovirus classified as a biosafety level four agent. The fusion (F) protein of Hendra virus is critical for promoting viral entry and cell-to-cell fusion. To be fusogenically active, Hendra virus F must undergo endocytic recycling and cleavage by the endosomal/lysosomal protease cathepsin L, but the route of Hendra virus F following internalization and the recycling signals involved are poorly understood. We examined the intracellular distribution of Hendra virus F following endocytosis and showed that it is primarily present in Rab5- and Rab4-positive endosomal compartments, suggesting that cathepsin L cleavage occurs in early endosomes. Hendra virus F transmembrane domain (TMD) residues S490 and Y498 were found to be important for correct Hendra virus F recycling, with the hydroxyl group of S490 and the aromatic ring of Y498 important for this process. In addition, changes in association of isolated Hendra virus F TMDs correlated with alterations to Hendra virus F recycling, suggesting that appropriate TMD interactions play an important role in endocytic trafficking.  相似文献   
116.
Miscanthus × giganteus is a C4 perennial grass that shows great potential as a high‐yielding biomass crop. Scant research has been published that reports M. × giganteus growth and biomass yields in different environments in the United States. This study investigated the establishment success, plant growth, and dry biomass yield of M. × giganteus during its first three seasons at four locations (Urbana, IL; Lexington, KY; Mead, NE; Adelphia, NJ) in the United States. Three nitrogen rates (0, 60, and 120 kg ha?1) were applied at each location each year. Good survival of M. × giganteus during its first winter was observed at KY, NE, and NJ (79–100%), and poor survival at IL (25%), due to late planting and cold winter temperatures. Site soil conditions, and growing‐season precipitation and temperature had the greatest impact on dry biomass yield between season 2 (2009) and season 3 (2010). Ideal 2010 weather conditions at NE resulted in significant yield increases (< 0.0001) of 15.6–27.4 Mg ha?1 from 2009 to 2010. Small yield increases in KY of 17.1 Mg ha?1 in 2009 to 19.0 Mg ha?1 in 2010 could be attributed to excessive spring rain and hot dry conditions late in the growing season. Average M. ×giganteus biomass yields in NJ decreased from 16.9 to 9.7 Mg ha?1 between 2009 and 2010 and were related to hot dry weather, and poor soil conditions. Season 3 yields were positively correlated with end‐of‐season plant height () and tiller density (). Nitrogen fertilization had no significant effect on plant height, tiller density, or dry biomass yield at any of the sites during 2009 or 2010.  相似文献   
117.
The neural basis of word-retrieval deficits in normal aging has rarely been assessed and the few previous functional imaging studies found enhanced activity in right prefrontal areas in healthy older compared to younger adults. However, more pronounced right prefrontal recruitment has primarily been observed during challenging task conditions. Moreover, increased task difficulty may result in enhanced activity in the ventral inferior frontal gyrus (vIFG) bilaterally in younger participants as well. Thus, the question arises whether increased activity in older participants represents an age-related phenomenon or reflects task difficulty effects. In the present study, we manipulated task difficulty during overt semantic and phonemic word-generation and used functional magnetic resonance imaging to assess activity patterns in the vIFG in healthy younger and older adults (N = 16/group; mean age: 24 vs. 69 years). Both groups produced fewer correct responses during the more difficult task conditions. Overall, older participants produced fewer correct responses and showed more pronounced task-related activity in the right vIFG. However, increased activity during the more difficult conditions was found in both groups. Absolute degree of activity was correlated with performance across groups, tasks and difficulty levels. Activity modulation (difficult vs. easy conditions) was correlated with the respective drop in performance across groups and tasks. In conclusion, vIFG activity levels and modulation of activity were mediated by performance accuracy in a similar way in both groups. Group differences in the right vIFG activity were explained by performance accuracy which needs to be considered in future functional imaging studies of healthy and pathological aging.  相似文献   
118.
To investigate the role of TCR signaling in the exit of CD4+ T cells from cell cycle, we took advantage of a low frequency TEa T cell adoptive transfer technique as well as the Y-Ae mAb to interrupt Ag/MHC recognition before the completion of clonal expansion. Termination of TCR signaling after 36 h of Ag exposure caused an immediate reduction in cell size and deceleration of G1->SG2M phase cell cycle progression. As a consequence, clonal expansion in the absence of durable TCR signaling decreased by two-thirds. Thus, CD4+ T cells scan for the presence Ag throughout their clonal expansion response, and continuously adjust their rate of cell growth and G1->S phase transition to match their intensity of TCR signaling.  相似文献   
119.
Immunoproteasome responds to injury in the retina and brain   总被引:1,自引:0,他引:1  
It is well known that immunoproteasome generates peptides for MHC Class I occupancy and recognition by cytotoxic T lymphocytes (CTL). The present study focused on evidence for alternative roles for immunoproteasome. Retina and brain were analyzed for expression of immunoproteasome subunits using immunohistochemistry and western blotting under normal conditions and after injury/stress induced by CTL attack on glia (brain) or neurons (retina). Normal retina expressed substantial levels of immunoproteasome in glia, neurons, and retinal pigment epithelium. The basal level of immunoproteasome in retina was two-fold higher than in brain; CTL-induced retinal injury further up-regulated immunoproteasome expression. Immunoproteasome up-regulation was also observed in injured brain and corresponded with expression in Purkinje cells, microglia, astrocytes, and oligodendrocytes. These results suggest that the normal environment of the retina is sufficiently challenging to require on-going expression of immunoproteasome. Further, immunoproteasome up-regulation with retinal and brain injury implies a role in neuronal protection and/or repair of damage.  相似文献   
120.
This study was conducted to investigate effects of an acute sodium load on resting plasma volume (PV) and renal mechanisms across the menstrual cycle of endurance-trained women with natural (NAT) or oral contraceptive pill (OCP) controlled cycles. Twelve women were assigned to one of two groups, according to their usage status: 1) OCP [n = 6, 29 yr (SD 6), 59.4 kg (SD 3.2)], or 2) NAT [n = 6, 24 yr (SD 5), 61.3 kg (SD 3.6)]. The sodium load was administered as a concentrated sodium chloride/citrate beverage (164 mmol Na(+)/l, 253 mosmol/kgH(2)O, 10 ml/kg body mass) during the last high-hormone week of the OCP cycle (OCP(high)) or late luteal phase of the NAT cycle (NAT(high)) and during the low-hormone sugar pill week of OCP (OCP(low)) or early follicular phase of the NAT cycle (NAT(low)). The beverage ( approximately 628 ml) was ingested in seven portions across 60 min. Over the next 4 h, PV expanded more in the low-hormone phase for both groups (time-averaged change): OCP(low) 6.1% (SD 1.1) and NAT(low) 5.4% (SD 1.2) vs. OCP(high) 3.9% (SD 0.9) and NAT(high) 3.5% (SD 0.8) (P = 0.02). The arginine vasopressin increased less in the low-hormone phase [1.63 (SD 0.2) and 1.30 pg/ml (SD 0.2) vs. 1.82 (SD 0.3) and 1.57 pg/ml (SD 0.5), P = 0.0001], as did plasma aldosterone concentration ( approximately 64% lower, P = 0.0001). Thus PV increased more and renal hormone sensitivity was decreased in the low-hormone menstrual phase following sodium/fluid ingestion, irrespective of OCP usage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号