首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   13篇
  2023年   1篇
  2021年   1篇
  2019年   3篇
  2018年   2篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   10篇
  2011年   4篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   10篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2000年   1篇
  1998年   2篇
  1994年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
61.
Methylibium petroleiphilum PM1 is a methylotroph distinguished by its ability to completely metabolize the fuel oxygenate methyl tert-butyl ether (MTBE). Strain PM1 also degrades aromatic (benzene, toluene, and xylene) and straight-chain (C(5) to C(12)) hydrocarbons present in petroleum products. Whole-genome analysis of PM1 revealed an approximately 4-Mb circular chromosome and an approximately 600-kb megaplasmid, containing 3,831 and 646 genes, respectively. Aromatic hydrocarbon and alkane degradation, metal resistance, and methylotrophy are encoded on the chromosome. The megaplasmid contains an unusual t-RNA island, numerous insertion sequences, and large repeated elements, including a 40-kb region also present on the chromosome and a 29-kb tandem repeat encoding phosphonate transport and cobalamin biosynthesis. The megaplasmid also codes for alkane degradation and was shown to play an essential role in MTBE degradation through plasmid-curing experiments. Discrepancies between the insertion sequence element distribution patterns, the distributions of best BLASTP hits among major phylogenetic groups, and the G+C contents of the chromosome (69.2%) and plasmid (66%), together with comparative genome hybridization experiments, suggest that the plasmid was recently acquired and apparently carries the genetic information responsible for PM1's ability to degrade MTBE. Comparative genomic hybridization analysis with two PM1-like MTBE-degrading environmental isolates (approximately 99% identical 16S rRNA gene sequences) showed that the plasmid was highly conserved (ca. 99% identical), whereas the chromosomes were too diverse to conduct resequencing analysis. PM1's genome sequence provides a foundation for investigating MTBE biodegradation and exploring the genetic regulation of multiple biodegradation pathways in M. petroleiphilum and other MTBE-degrading beta-proteobacteria.  相似文献   
62.
Species detection using eDNA is revolutionizing global capacity to monitor biodiversity. However, the lack of regional, vouchered, genomic sequence information—especially sequence information that includes intraspecific variation—creates a bottleneck for management agencies wanting to harness the complete power of eDNA to monitor taxa and implement eDNA analyses. eDNA studies depend upon regional databases of mitogenomic sequence information to evaluate the effectiveness of such data to detect and identify taxa. We created the Oregon Biodiversity Genome Project to create a database of complete, nearly error-free mitogenomic sequences for all of Oregon's fishes. We have successfully assembled the complete mitogenomes of 313 specimens of freshwater, anadromous and estuarine fishes representing 24 families, 55 genera and 129 species and lineages. Comparative analyses of these sequences illustrate that many regions of the mitogenome are taxonomically informative, that the short (~150 bp) mitochondrial ‘barcode’ regions typically used for eDNA assays do not consistently diagnose for species and that complete single or multiple genes of the mitogenome are preferable for identifying Oregon's fishes. This project provides a blueprint for other researchers to follow as they build regional databases, illustrates the taxonomic value and limits of complete mitogenomic sequences and offers clues as to how current eDNA assays and environmental genomics methods of the future can best leverage this information.  相似文献   
63.
64.
Seasonal changes in day length enhance or suppress components of immune function in individuals of several mammalian species. Siberian hamsters (Phodopus sungorus) exhibit multiple changes in neuroendocrine, reproductive, and immune function after exposure to short days. The manner in which these changes are integrated into the host response to pathogens is not well understood. The present experiments tested the hypothesis that short-day changes in immune function alter the pathogenesis of septic shock and survival after challenge with endotoxin. Male and female Siberian hamsters raised in long-day photoperiods were transferred as adults to short days or remained in their natal photoperiod. Six to 8 weeks later, hamsters were injected i.p. with 0, 1, 2.5, 10, 25, or 50 mg/kg bacterial lipopolysaccharide (LPS) (the biologically active constituent of endotoxin), and survival was monitored for 96 h. Short days significantly improved survival of male hamsters treated with 10 or 25 mg/kg LPS and improved survival in females treated with 50 mg/kg LPS. Transfer from long to short days shifted the LD50 in males by approximately 90%, from 5.3 to 9.9 mg/kg, and in females from 11.1 to 15.0 mg/kg (+35%). Long-day females were more resistant than were males to lethal endotoxemia. In vitro production of the proinflammatory cytokine TNFalpha in response to LPS stimulation was significantly lower in macrophages extracted from short-day relative to long-day hamsters, as were circulating concentrations of TNFalpha in vivo after i.p. administration of LPS, suggesting that diminished cytokine responses to LPS in short days may mitigate the lethality of endotoxemia. Adaptation to short days induces changes in immune parameters that affect survival in the face of immune challenges.  相似文献   
65.
The 18S-26S nuclear rDNA external transcribed spacer (ETS) has recently gained attention as a region that is valuable in phylogenetic analyses of angiosperms primarily because it can supplement nucleotide variation from the widely used and generally shorter internal transcribed spacers (ITS-1 and ITS-2) and thereby improve phylogenetic resolution and clade support in rDNA trees. Subrepeated ETS sequences (often occurring in the 5(') region) can, however, create a challenge for systematists interested in using ETS sequence data for phylogeny reconstruction. We sequenced the 5(')ETS for members of Lessingia (Compositae, Astereae) and close relatives (26 taxa total) to characterize the subrepeat variation across a group of closely related plant lineages and to gain improved understanding of the structure, molecular evolution, and phylogenetic utility of the region. The 5(')ETS region of Lessingia and relatives varied in length from approximately 245 to 1009 bp due to the presence of a variable number of subrepeats (one to eight). We assessed homology of the subrepeats using phylogenetic analysis and concluded that only two of the subrepeats and a portion of a third ( approximately 282 bp in total) were orthologous across Lessingia and could be aligned with confidence and included in further analyses. When the partial 5(')ETS data were combined with 3(')ETS and ITS data in phylogenetic analyses, no additional resolution of relationships among taxa was obtained beyond that found from analysis of 3(')ETS + ITS sequences. Inferred patterns of concerted evolution indicate that homogenization is occurring at a faster rate in the 3(')ETS and ITS regions than in the 5(')ETS region. Additionally, homogenization appears to be acting within but not among subrepeats of the same rDNA array. We conclude that challenges in assessing subrepeat orthology across taxa greatly limit the utility of the 5(')ETS region for phylogenetic analyses among species of Lessingia.  相似文献   
66.
Deer mice are the principal reservoir hosts of Sin Nombre virus, the etiologic agent of most hantavirus cardiopulmonary syndrome cases in North America. Infection of deer mice results in persistence without conspicuous pathology, and most, if not all, infected mice remain infected for life, with periods of viral shedding. The kinetics of viral load, histopathology, virus distribution, and immune gene expression in deer mice were examined. Viral antigen was detected as early as 5 days postinfection and peaked on day 15 in the lungs, hearts, kidneys, and livers. Viral RNA levels varied substantially but peaked on day 15 in the lungs and heart, and antinucleocapsid IgG antibodies appeared in some animals on day 10, but a strong neutralizing antibody response failed to develop during the 20-day experiment. No clinical signs of disease were observed in any of the infected deer mice. Most genes were repressed on day 2, suggesting a typical early downregulation of gene expression often observed in viral infections. Several chemokine and cytokine genes were elevated, and markers of a T cell response occurred but then declined days later. Splenic transforming growth factor beta (TGF-β) expression was elevated early in infection, declined, and then was elevated again late in infection. Together, these data suggest that a subtle immune response that fails to clear the virus occurs in deer mice.  相似文献   
67.

Background

HIV-1-positive patients clear the human papillomavirus (HPV) infection less frequently than HIV-1-negative. Datasets for estimating HPV clearance probability often have irregular measurements of HPV status and risk factors. A new transitional probability-based model for estimation of probability of HPV clearance was developed to fully incorporate information on HIV-1-related clinical data, such as CD4 counts, HIV-1 viral load (VL), highly active antiretroviral therapy (HAART), and risk factors (measured quarterly), and HPV infection status (measured at 6-month intervals).

Methodology and Findings

Data from 266 HIV-1-positive and 134 at-risk HIV-1-negative adolescent females from the Reaching for Excellence in Adolescent Care and Health (REACH) cohort were used in this study. First, the associations were evaluated using the Cox proportional hazard model, and the variables that demonstrated significant effects on HPV clearance were included in transitional probability models. The new model established the efficacy of CD4 cell counts as a main clearance predictor for all type-specific HPV phylogenetic groups. The 3-month probability of HPV clearance in HIV-1-infected patients significantly increased with increasing CD4 counts for HPV16/16-like (p<0.001), HPV18/18-like (p<0.001), HPV56/56-like (p = 0.05), and low-risk HPV (p<0.001) phylogenetic groups, with the lowest probability found for HPV16/16-like infections (21.60±1.81% at CD4 level 200 cells/mm3, p<0.05; and 28.03±1.47% at CD4 level 500 cells/mm3). HIV-1 VL was a significant predictor for clearance of low-risk HPV infections (p<0.05). HAART (with protease inhibitor) was significant predictor of probability of HPV16 clearance (p<0.05). HPV16/16-like and HPV18/18-like groups showed heterogeneity (p<0.05) in terms of how CD4 counts, HIV VL, and HAART affected probability of clearance of each HPV infection.

Conclusions

This new model predicts the 3-month probability of HPV infection clearance based on CD4 cell counts and other HIV-1-related clinical measurements.  相似文献   
68.
Tobacco use leads to numerous health problems, including cancer, heart disease, emphysema, and stroke. Addiction to cigarette smoking is a prevalent neuropsychiatric disorder that stems from the biophysical and cellular actions of nicotine on nicotinic acetylcholine receptors (nAChRs) throughout the central nervous system. Understanding the various nAChR subtypes that exist in brain areas relevant to nicotine addiction is a major priority.Experiments that employ electrophysiology techniques such as whole-cell patch clamp or two-electrode voltage clamp recordings are useful for pharmacological characterization of nAChRs of interest. Cells expressing nAChRs, such as mammalian tissue culture cells or Xenopus laevis oocytes, are physically isolated and are therefore easily studied using the tools of modern pharmacology. Much progress has been made using these techniques, particularly when the target receptor was already known and ectopic expression was easily achieved. Often, however, it is necessary to study nAChRs in their native environment: in neurons within brain slices acutely harvested from laboratory mice or rats. For example, mice expressing "hypersensitive" nAChR subunits such as α4 L9′A mice 1 and α6 L9′S mice 2, allow for unambiguous identification of neurons based on their functional expression of a specific nAChR subunit. Although whole-cell patch clamp recordings from neurons in brain slices is routinely done by the skilled electrophysiologist, it is challenging to locally apply drugs such as acetylcholine or nicotine to the recorded cell within a brain slice. Dilution of drugs into the superfusate (bath application) is not rapidly reversible, and U-tube systems are not easily adapted to work with brain slices.In this paper, we describe a method for rapidly applying nAChR-activating drugs to neurons recorded in adult mouse brain slices. Standard whole-cell recordings are made from neurons in slices, and a second micropipette filled with a drug of interest is maneuvered into position near the recorded cell. An injection of pressurized air or inert nitrogen into the drug-filled pipette causes a small amount of drug solution to be ejected from the pipette onto the recorded cell. Using this method, nAChR-mediated currents are able to be resolved with millisecond accuracy. Drug application times can easily be varied, and the drug-filled pipette can be retracted and replaced with a new pipette, allowing for concentration-response curves to be created for a single neuron. Although described in the context of nAChR neurobiology, this technique should be useful for studying many types of ligand-gated ion channels or receptors in neurons from brain slices.  相似文献   
69.
Herein, we report on the identification of three potent glycine and related amino acid-based series of FXa inhibitors containing a neutral P1 chlorophenyl pharmacophore. A X-ray crystal structure has shown that constrained glycine derivatives with optimized N-substitution can greatly increase hydrophobic interactions in the FXa active site. Also, the substitution of a pyridone ring for a phenylsulfone ring in the P4 sidechain resulted in an inhibitor with enhanced oral bioavailability.  相似文献   
70.
Repellents evoke growth cone turning by eliciting asymmetric, localized loss of actin cytoskeleton together with changes in substratum attachment. We have demonstrated that semaphorin-3A (Sema3A)-induced growth cone detachment and collapse require eicosanoid-mediated activation of protein kinase C epsilon (PKC epsilon) and that the major PKC epsilon target is the myristoylated, alanine-rich C-kinase substrate (MARCKS). Here, we show that PKC activation is necessary for growth cone turning and that MARCKS, while at the membrane, colocalizes with alpha3-integrin in a peripheral adhesive zone of the growth cone. Phosphorylation of MARCKS causes its translocation from the membrane to the cytosol. Silencing MARCKS expression dramatically reduces growth cone spread, whereas overexpression of wild-type MARCKS inhibits growth cone collapse triggered by PKC activation. Expression of phosphorylation-deficient, mutant MARCKS greatly expands growth cone adhesion, and this is characterized by extensive colocalization of MARCKS and alpha3-integrin, resistance to eicosanoid-triggered detachment and collapse, and reversal of Sema3A-induced repulsion into attraction. We conclude that MARCKS is involved in regulating growth cone adhesion as follows: its nonphosphorylated form stabilizes integrin-mediated adhesions, and its phosphorylation-triggered release from adhesions causes localized growth cone detachment critical for turning and collapse.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号