首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   21篇
  240篇
  2020年   2篇
  2018年   7篇
  2017年   5篇
  2016年   6篇
  2015年   11篇
  2014年   3篇
  2013年   7篇
  2012年   10篇
  2011年   11篇
  2010年   10篇
  2009年   13篇
  2008年   9篇
  2007年   8篇
  2006年   4篇
  2005年   8篇
  2003年   6篇
  2002年   5篇
  2001年   5篇
  2000年   7篇
  1999年   7篇
  1998年   5篇
  1997年   7篇
  1996年   4篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   7篇
  1986年   7篇
  1985年   7篇
  1984年   3篇
  1983年   4篇
  1982年   1篇
  1981年   4篇
  1980年   2篇
  1979年   5篇
  1978年   3篇
  1977年   5篇
  1976年   3篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1957年   1篇
排序方式: 共有240条查询结果,搜索用时 0 毫秒
51.
The effect of chronic para-chlorphenylalanine (PCPA) treatment was investigated in two different seizure models: the pentylenetetrazole (PTX) seizure model in rats and the kindled seizures from rabbit amygdala. Chronic PCPA treatment (21 days) in male albino rats caused a progressive decrease in the 5-hydroxytryptamine (5-HT) brain level between the 1st and the 7th day of PCPA administration. Then the 5-HT level remained low until the end of the experiment. On the background of the low 5-HT level there occurred changes in PTZ convulsive reactions: after the 3rd day of PCPA treatment the convulsive-seizure reactivity was significantly increased and after the 7th, 14th and 21st day the increased seizure reactivity performed only as a tendency, though the 5-HT level was still low. Chronic PCPA treatment (16 days) of rabbits delayed the development of the behavioural kindled seizures. This treatment also reduced the duration of bioelectrical seizures until the 8th day of treatment, especially in the motor cortex. The observed different effect of the chronic PCPA treatment in both seizure models: pentylenetetrazole in rats and kindling in rabbits might be explained by essential differences in the origin and mechanisms of development of the two seizure models.  相似文献   
52.
53.
Phylogeny of Tunicata inferred from molecular and morphological characters   总被引:5,自引:0,他引:5  
The phylogeny of the Tunicata was reconstructed using molecular and morphological characters. Mitochondrial cytochrome oxidase I (cox1) and 18S rDNA sequences were obtained for 14 and 4 tunicate species, respectively. 18S rDNA sequences were aligned with gene sequences obtained from GenBank of 57 tunicates, a cephalochordate, and a selachian craniate. Cox1 sequences were aligned with the sequence of two ascidians and a cephalochordate obtained from GenBank. Traditional, morphological, life history, and biochemical characters of larval and adult stages were compiled from the literature and analyzed cladistically. Separate and simultaneous parsimony analyses of molecular and morphological data were carried out. Aplousobranch ascidians from three different families were included in a molecular phylogenetic analysis for the first time. Analysis of the morphological, life history, and biochemical characters results in a highly unresolved tree. Aplousobranchiata form a strongly supported monophylum in the analysis of the 18S rDNA data, the morphological data, and the combined data set. Cionidae is not included in the Aplousobranchiata but nests within the Phlebobranchiata. Appendicularia (=Larvacea) nest within the 'Ascidiacea' as the sister taxon of Aplousobranchiata in the parsimony analysis of the 18S rDNA data and the combined analysis. A potential morphological synapomorphy of Aplousobranchiata plus Appendicularia is the horizontal orientation of the larval tail. In the 18S rDNA and the combined analysis, Thaliacea is included in the 'Ascidiacea' as the sister group to Phlebobranchiata. Pyrosomatida is found to be the sister taxon to the Salpidae in analyses of 18S rDNA and combined data, whereas the analysis of the morphological data recovers a sister group relationship between Doliolidae and Salpidae. Results of cox1 analyses are incongruent with both the 18S rDNA and the morphological phylogenies. Cox1 sequences may evolve too rapidly to resolve relationships of higher tunicate taxa. However, the cox1 data may be useful at lower taxonomic levels.  相似文献   
54.
Mechanochemical coupling in spin-labeled, active, isometric muscle   总被引:3,自引:0,他引:3       下载免费PDF全文
Observed effects of inorganic phosphate (P(i)) on active isometric muscle may provide the answer to one of the fundamental questions in muscle biophysics: how are the free energies of the chemical species in the myosin-catalyzed ATP hydrolysis (ATPase) reaction coupled to muscle force?. Pflugers Arch. 414:73-81) showed that active, isometric muscle force varies logarithmically with [P(i)]. Here, by simultaneously measuring electron paramagnetic resonance and the force of spin-labeled muscle fibers, we show that, in active, isometric muscle, the fraction of myosin heads in any given biochemical state is independent of both [P(i)] and force. These direct observations of mechanochemical coupling in muscle are immediately described by a muscle equation of state containing muscle force as a state variable. These results challenge the conventional assumption mechanochemical coupling is localized to individual myosin heads in muscle.  相似文献   
55.
Airborne concentrations of Poaceae pollen have been monitored in Poznań for more than 10 years and the length of the dataset is now considered sufficient for statistical analysis. The objective of this paper is to produce long-range forecasts that predict certain characteristics of the grass pollen season (such as the start, peak and end dates of the grass pollen season) as well as short-term forecasts that predict daily variations in grass pollen counts for the next day or next few days throughout the main grass pollen season. The method of forecasting was regression analysis. Correlation analysis was used to examine the relationship between grass pollen counts and the factors that affect its production, release and dispersal. The models were constructed with data from 1994 to 2004 and tested on data from 2005 and 2006. The forecast models predicted the start of the grass pollen season to within two days and achieved 61% and 70% accuracy on a scale of 1–4 when forecasting variations in daily average grass pollen counts in 2005 and 2006, respectively. This study has emphasised how important the weather during the few weeks or months preceding pollination is to grass pollen production, and draws attention to the importance of considering large-scale patterns of climate variability (indices of the North Atlantic Oscillation) when constructing forecast models for allergenic pollen.  相似文献   
56.
57.
We investigated the effect of development mode on the spatial and temporal population genetic structure of four littorinid gastropod species. Snails were collected from the same three sites on the west coast of Vancouver Island, Canada in 1997 and again in 2007. DNA sequences were obtained for one mitochondrial gene, cytochrome b ( Cyt b ), and for up to two nuclear genes, heat shock cognate 70 ( HSC70 ) and aminopeptidase N intron ( APN54 ). We found that the mean level of genetic diversity and long-term effective population sizes ( N e) were significantly greater for two species, Littorina scutulata and L. plena , that had a planktotrophic larval stage than for two species, Littorina sitkana and L. subrotundata , that laid benthic egg masses which hatched directly into crawl-away juveniles. Predictably, two poorly dispersing species, L. sitkana and L. subrotundata , showed significant spatial genetic structure at an 11- to 65-km geographical scale that was not observed in the two planktotrophic species. Conversely, the two planktotrophic species had more temporal genetic structure over a 10-year interval than did the two direct-developing species and showed highly significant temporal structure for spatially pooled samples. The greater temporal genetic variation of the two planktotrophic species may have been caused by their high fecundity, high larval dispersal, and low but spatially correlated early survivorship. The sweepstakes-like reproductive success of the planktotrophic species could allow a few related females to populate hundreds of kilometres of coastline and may explain their substantially larger temporal genetic variance but lower spatial genetic variance relative to the direct-developing species.  相似文献   
58.
Multivesicular bodies (MVBs) are spherical endosomal organelles containing small vesicles formed by inward budding of the limiting membrane into the endosomal lumen. In mammalian red cells and cells of immune system, MVBs fuse with the plasma membrane in an exocytic manner, leading to release their contents including internal vesicles into the extracellular space. These released vesicles are termed exosomes. Transmission electron microscopy studies have shown that paramural vesicles situated between the plasma membrane and the cell wall occur in various cell wall-associated processes and are similar to exosomes both in location and in morphology. Our recent studies have revealed that MVBs and paramural vesicles proliferate when cell wall appositions are rapidly deposited beneath fungal penetration attempts or during plugging of plasmodesmata between hypersensitive cells and their intact neighboring cells. This indicates a potential secretion of exosome-like vesicles into the extracellular space by fusion of MVBs with the plasma membrane. This MVB-mediated secretion pathway was proposed on the basis of pioneer studies of MVBs and paramural vesicles in plants some forty years ago. Here, we recall the attention to the occurrence of MVB-mediated secretion of exosomes in plants.Key Words: cell wall, endocytosis, endosome, exocytosis, exosome, multivesicular body, paramural bodyMultivesicular bodies (MVBs) are spherical endosomal organelles containing a number of small vesicles formed by inward budding of the limiting membrane into the endosomal lumen.1 MVBs contain endocytosed cargoes and deliver them into lysosomal/vacuolar compartments for degradation. They also incorporate newly synthesized proteins destined for lysosomal/vacuolar compartments.2 In mammalian cells of hematopoietic origin, endosomal MVBs function in removal of endocytosed surface proteins in an exocytic manner. They are redirected to the plasma membrane, where they release their contents including internal vesicles into the extracellular space by membrane fusion. The released vesicles are termed exosomes.3 During reticulocyte maturation to erythrocyte, a group of surface proteins, such as the transferrin receptor, become obsolete and are discarded via MVB-mediated secretion.3 Time-course transmission electron microscopy (TEM) first revealed that colloidal gold-transferrin was internalized into MVBs via receptor-mediated endocytosis and then transferrin together with its receptor were delivered into the extracellular space via the fusion of MVBs with the plasma membrane of reticulocytes.4 Some other cell types of hematopoietic origin, such as activated platelets, cytotoxic T cells and antigen-presenting cells, also secrete exosomes. Exosomes thus may play a role in various physiological processes other than discarding obsolete proteins.3Our recent TEM studies provided ultrastructural evidence on the enhanced vesicle trafficking in barley leaf cells attacked by the biotrophic powdery mildew fungus. Multivesicular compartments including MVBs, intravacuolar MVBs, and paramural bodies turned out to proliferate in intact host cells during formation of cell wall appositions (papilla response), in the hypersensitive response, and during accommodation of haustoria.5,6 MVBs proliferated in the cytoplasm of haustorium-containing epidermal cells during compatible interactions and near sites of cell wall-associated oxidative microburst either during the papilla response or during the hypersensitive response. Because MVBs in plant cells have been demonstrated to be endosomal compartments,79 they may participate in internalization of nutrients from the apoplast of intact haustorium-containing epidermal cells and sequestration of damaged membranes and deleterious materials originating from the oxidative microburst.5,6 The presence of intravacuolar MVBs with double limiting membranes (Fig. 1A) indicates an engulfment of MVBs by the tonoplast and a vacuole-mediated autophagy of MVBs.5,6 MVBs, as prevacuolar compartments in plant cells,9 thus probably deliver their contents into the central vacuole via both the fusion with the tonoplast and the engulfment by the tonoplast (Fig. 2A and B). On the other hand, paramural bodies, in which small vesicles are situated between the cell wall and the plasma membrane, were associated with cell wall appositions deposited beneath fungal penetration attempts (Fig. 1B) or around hypersensitive cells including sites of plugged plasmodesmata (Fig. 1C and D).5,6 Because paramural vesicles are similar to exosomes both in location and in morphology, we speculated that MVBs fuse with the plasma membrane in an exocytic manner to form paramural bodies.5,6 Endocytosed cell surface materials in endosomal MVBs may be reused and delivered together with newly synthesized materials in Golgi apparatus-derived vesicles to cell wall appositions, which are deposited rapidly to prevent fungal penetration (Fig. 2A) or to contain hypersensitive cell death (Fig. 2B). MVBs thus may be driven along two distinct pathways to deliver their contents into either central vacuole or extracellular space.Open in a separate windowFigure 1Multivesicular compartments in intact cells in barley leaves attacked by the barley powdery mildew fungus. (A) An intravacuolar multivesicular body (MVB) with double limiting membranes in an intact epidermal cell (EC) adjacent to a hypersensitive epidermal cell (EC*). The arrows point to the outer limiting membrane, which is seemingly derived from the tonoplast. Note that neighboring intravacuolar vesicles (in between two arrowheads) may result from degradation of double limiting membranes of intravacuolar MVBs or may be delivered into the vacuole by MVB-fusion with the tonoplast. (B) Paramural vesicles (arrowheads) in a paramural body associated with cell wall appositions (asterisk) deposited by an intact epidermal cell. (C) A multivesicular body (MVB) in contact with a paramural body (PMB) (a nonmedian section) associated with cell wall appositions (asterisk) deposited by an intact mesophyll cell adjacent to a hypersensitive mesophyll cell. Note that cell wall appositions deposit beside an intercellular space (IS). The arrows point to the tonoplast. (D) A paramural body (PMB) associated with cell wall appositions (asterisks) blocking plasmodesmata (in between two arrowheads) at the side of an intact mesophyll cell (MC) underlying a hypersensitive epidermal cell (EC*). The arrows point to the tonoplast. CV, central vacuole; CW, cell wall; MB, microbody. Bars, 1µm.Open in a separate windowFigure 2Hypothetical diagram of delivery of endocytosed cell surface materials via MVBs into the central vacuole or the extracellular space where intact barley cells deposit cell wall appositions. (A) Deposition of cell wall appositions (asterisk) beneath powdery mildew penetration attempts. AGT, appressorial germ tube; PP, penetration peg. (B) Deposition of cell wall appositions (asterisks) against constricted plasmodesmata (PD) between a hypersensitive epidermal cell (EC) penetrated by the powdery mildew fungus and an underlying mesophyll cell (MC). H, haustorium. Arrows and numbers show pathways of vesicle trafficking. 1, Secretion of Golgi-derived vesicles containing newly synthesized materials; G, Golgi body; TGN, trans-Golgi network; 2, Endocytosis of cell surface materials from coated pits (coated open circles) via coated vesicles (coated circles) to multivesicular bodies (MVB); 3, Delivery of endocytosed materials for degradation inside the central vacuole (CV) via membrane fusion between MVBs and the tonoplast (T); small broken circles, vesicles in degradation; 4, Delivery of endocytosed materials for degradation inside the central vacuole via engulfment of MVBs by the tonoplast; large broken circles; MVB limiting membranes in degradation; 5, delivery of endocytosed materials into the extracellular space for deposition of cell wall appositions (asterisks) via membrane fusion between MVBs and the plasma membrane (PM). CW, cell wall; PMB, paramural body. PD0, 1, 2, 3 and 4 represent stages of plugging plasmodesmata. PD0, open plasmodesmata between two intact mesophyll cells (MC) subjacent to the hypersensitive epidermal cell (EC); PD1, constriction of plasmodesmata by callose (grey dots) deposition at plasmodesmal neck region; PD2, constricted plasmodesmata associated with plasmodesma-targeted secretion; PD3, further blocking of plasmodesmata by deposition of cell wall appositions; PD4, completely blocked plasmodesmata.Earlier than the discovery in animal cell systems,4 it was proposed in two independent papers in 1967 that the fusion of MVBs with the plasma membrane might result in the release of small vesicles into the extracellular space in fungi and in higher plants.10,11 Several lines of evidence support the occurrence of MVB-mediated secretion of exosome-like vesicles in plants. First, vesicles of the same morphology as MVB internal vesicles have been observed in extracellular spaces or paramural spaces in various types of plant cells in various plant species by TEM.12 An early study on endocytosis by soybean protoplasts also showed small extracellular vesicles attaching on the plasma membrane.8 Second, cooccurrence of MVBs and paramural vesicles has been observed in processes of cell proliferation, cell differentiation, and cell response to abiotic and biotic stress. Examples are cell plate formation,13,14 secondary wall thickening,15,16 cold hardness,17,18 and deposition of cell wall appositions upon pathogen attack.5,6,1921 Third, identical molecular components, such as arabinogalactan proteins22,23 and peroxidases,6 have been immunolocalized in both MVBs and paramural bodies. Despite these pieces of evidence, a conclusive demonstration of MVB-mediated secretion of exosomes in plants requires further exploration.The presently available experimental systems, approaches, and membrane markers may allow future demonstration of MVB-mediated secretion of exosomes in plants. Recent in vivo real-time observation and colocalization of cell surface and endosomal markers have already revealed that endosomes filled with endocytosed preexisting cell wall and plasma membrane materials are rapidly delivered to cytokinetic spaces to form cell plates in dividing tobacco, Arabidopsis, and maize cells.24 Because TEM observed paramural bodies attaching to cell plates13 and MVBs in the vicinity of cell plates during all stages of cell plate formation,14,25,26 MVBs and paramural bodies may participate in delivery of endocytosed building blocks to cell plates. Jiang''s and Robinson''s labs together developed a transgenic tobacco BY-2 cell line stably expressing a YFP-labeled vacuolar sorting receptor protein and antibodies against the vacuolar sorting receptor protein localized to the limiting membrane of MVBs.9 These tools together with live cell imaging and immunoelectron microscopy may allow visualization of MVB-fusion to the new plasma membrane, of vacuolar sorting receptors in both the limiting membrane of MVBs and the new plasma membrane, and of identical cell plate components in both internal vesicles of MVBs and paramural vesicles.In spite of obvious differences in plant and animal cytokinesis, the generation of cell plates by cell-plate-directed fusion of endosomes resembles the plugging of midbody canals by midbody-directed endosomes to separate daughter cells at the terminal phase of animal cytokinesis.27 Likely, functional similarities of the fusion between endosomal MVBs and the plasma membrane to eliminate unwanted cell contents may also exist in maturation of mammalian red blood cells and plant sieve elements in the sense that the fusion of MVBs with the plasma membrane may occur during maturation of the latter.28 On the other hand, although plant cells may secrete MVB-derived exosomes in defense response upon pathogen attack,5,6 plant cell walls rule out the direct intercellular communication during the immune response mediated by exosomes in the circulation of mammals.3 In contrast, plasmodesma-directed secretion of exosomes would block the cell-to-cell communication between hypersensitive cells and their neighboring cells during hypersensitive response.5 Further exploration will lead us to a better understanding of similarities and differences of exosome secretion between plants and animals.  相似文献   
59.
Verrucosispora isolate AB-18-032T, the abyssomicin- and proximicin-producing actinomycete, has chemotaxonomic and morphological properties consistent with its classification in the genus Verrucosispora. The organism formed a distinct phyletic line in the Verrucosispora 16S rRNA gene tree sharing similarities of 99.7%, 98.7% and 98.9% with Verrucosispora gifhornensis DSM 44337T, Verrucosispora lutea YIM 013T and Verrucosispora sediminis MS 426T, respectively. It was readily distinguished from the two latter species using a range of phenotypic features and from V. gifhornensis DSM 44337T, its nearest phylogenetic neighbor, by a DNA G+C content of 65.5 mol% obtained by thermal denaturation and fluorometry and DNA:DNA relatedness values of 64.0% and 65.0% using renaturation and fluorometric methods, respectively. It is apparent from the combined genotypic and phenotypic data that strain AB-18-032T should be classified in the genus Verrucosispora as a new species. The name Verrucosispora maris sp. nov. is proposed for this taxon with isolate AB-18-032T (= DSM 45365T = NRRL B-24793T) as the type strain.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号