首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1433篇
  免费   182篇
  2023年   5篇
  2022年   15篇
  2021年   28篇
  2020年   15篇
  2019年   27篇
  2018年   14篇
  2017年   26篇
  2016年   43篇
  2015年   62篇
  2014年   76篇
  2013年   78篇
  2012年   117篇
  2011年   115篇
  2010年   84篇
  2009年   73篇
  2008年   84篇
  2007年   85篇
  2006年   79篇
  2005年   90篇
  2004年   52篇
  2003年   47篇
  2002年   60篇
  2001年   23篇
  2000年   24篇
  1999年   19篇
  1998年   17篇
  1997年   10篇
  1996年   12篇
  1995年   9篇
  1994年   7篇
  1993年   4篇
  1992年   9篇
  1991年   20篇
  1990年   13篇
  1989年   13篇
  1988年   12篇
  1987年   14篇
  1986年   8篇
  1985年   5篇
  1984年   13篇
  1982年   7篇
  1979年   6篇
  1977年   6篇
  1976年   9篇
  1975年   5篇
  1973年   5篇
  1966年   4篇
  1935年   3篇
  1931年   3篇
  1924年   3篇
排序方式: 共有1615条查询结果,搜索用时 15 毫秒
991.
Mouse lemurs (Microcebus spp.) are an exciting new primate model for understanding human aging and disease. In captivity, Microcebus murinus develops human-like ailments of old age after five years (e.g., neurodegeneration analogous to Alzheimer''s disease) but can live beyond 12 years. It is believed that wild Microcebus follow a similar pattern of senescence observed in captive animals, but that predation limits their lifespan to four years, thus preventing observance of these diseases in the wild. Testing whether this assumption is true is informative about both Microcebus natural history and environmental influences on senescence, leading to interpretation of findings for models of human aging. Additionally, the study of Microcebus longevity provides an opportunity to better understand mechanisms of sex-biased longevity. Longevity is often shorter in males of species with high male-male competition, such as Microcebus, but mouse lemurs are sexually monomorphic, suggesting similar lifespans. We collected individual-based observations of wild brown mouse lemurs (Microcebus rufus) from 2003–2010 to investigate sex-differences in survival and longevity. Fecal testosterone was measured as a potential mechanism of sex-based differences in survival. We used a combination of high-resolution tooth wear techniques, mark-recapture, and hormone enzyme immunoassays. We found no dental or physical signs of senescence in M. rufus as old as eight years (N = 189, ages 1–8, mean = 2.59±1.63 SE), three years older than captive, senescent congeners (M. murinus). Unlike other polygynandrous vertebrates, we found no sex difference in age-dependent survival, nor sex or age differences in testosterone levels. While elevated male testosterone levels have been implicated in shorter lifespans in several species, this is one of the first studies to show equivalent testosterone levels accompanying equivalent lifespans. Future research on captive aged individuals can determine if senescence is partially a condition of their captive environment, and studies controlling for various environmental factors will further our understanding of senescence.  相似文献   
992.
Chitin, an integral component of the fungal cell wall, is one of the best-studied microbe-associated molecular patterns. Previous work identified a LysM receptor-like kinase (LysM-RLK1/CERK1) as the primary chitin receptor in Arabidopsis. In order to identify proteins that interact with CERK1, we conducted a yeast two-hybrid screen using the intracellular kinase domain of CERK1 as the bait. This screen identified 54 putative CERK1-interactors. Screening mutants defective in 43 of these interacting proteins identified only two, a calmodulin like protein (At3g10190) and a leucine-rich repeat receptor like kinase (At3g14840), which differed in their response to pathogen challenge. In the present work, we focused on characterizing the LRR-RLK gene where mutations altered responses to chitin elicitation. This LRR-RLK was named LysM RLK1-interacting kinase 1 (LIK1). The interaction between CERK1 and LIK1 was confirmed by co-immunoprecipitation using protoplasts and transgenic plants. In vitro experiments showed that LIK1 was directly phosphorylated by CERK1. In vivo phosphorylation assays showed that Col-0 wild-type plants have more phosphorylated LIK1 than cerk1 mutant plants, suggesting that LIK1 may be directly phosphorylated by CERK1. Lik1 mutant plants showed an enhanced response to both chitin and flagellin elicitors. In comparison to the wild-type plants, lik1 mutant plants were more resistant to the hemibiotrophic pathogen Pseudomonas syringae, but more susceptible to the necrotrophic pathogen Sclerotinia sclerotiorum. Consistent with the enhanced susceptibility to necrotrophs, lik1 mutants showed reduced expression of genes involved in jasmonic acid and ethylene signaling pathways. These data suggest that LIK1 directly interacts with CERK1 and regulates MAMP-triggered innate immunity.  相似文献   
993.
Hybridization and introgression are pervasive evolutionary phenomena that provide insight into the selective forces that maintain species boundaries, permit gene flow, and control the direction of evolutionary change. Poplar trees (Populus L.) are well known for their ability to form viable hybrids and maintain their distinct species boundaries despite this interspecific gene flow. We sought to quantify the hybridization dynamics and postzygotic fitness within a hybrid stand of balsam poplar (Populus balsamifera L.), eastern cottonwood (P. deltoides Marsh.), and their natural hybrids to gain insight into the barriers maintaining this stable hybrid zone. We observed asymmetrical hybrid formation with P. deltoides acting as the seed parent, but with subsequent introgression biased toward P. balsamifera. Native hybrids expressed fitness traits intermediate to the parental species and were not universally unfit. That said, native hybrid seedlings were absent from the seedling population, which may indicate additional selective pressures controlling their recruitment. It is imperative that we understand the selective forces maintaining this native hybrid zone in order to quantify the impact of exotic poplar hybrids on this native system.  相似文献   
994.
Trees bearing novel or exotic gene components are poised to contribute to the bioeconomy for a variety of purposes such as bioenergy production, phytoremediation, and carbon sequestration within the forestry sector, but sustainable release of trees with novel traits in large‐scale plantations requires the quantification of risks posed to native tree populations. Over the last century, exotic hybrid poplars produced through artificial crosses were planted throughout eastern Canada as ornamentals or windbreaks and these exotics provide a proxy by which to examine the fitness of exotic poplar traits within the natural environment to assess risk of exotic gene escape, establishment, and spread into native gene pools. We assessed postzygotic fitness traits of native and exotic poplars within a naturally regenerated stand in eastern Canada (Quebec City, QC). Pure natives (P. balsamifera and P. deltoides spp. deltoides), native hybrids (P. deltoides × P. balsamifera), and exotic hybrids (trees bearing Populus nigra and P. maximowiczii genetic components) were screened for reproductive biomass, yield, seed germination, and fungal disease susceptibility. Exotic hybrids expressed fitness traits intermediate to pure species and were not significantly different from native hybrids. They formed fully viable seed and backcrossed predominantly with P. balsamifera. These data show that exotic hybrids were not unfit and were capable of establishing and competing within the native stand. Future research will seek to examine the impact of exotic gene regions on associated biotic communities to fully quantify the risk exotic poplars pose to native poplar forests.  相似文献   
995.
There is a dearth of technology and methods to aid process characterization, control and scale‐up of complex culture platforms that provide niche micro‐environments for some stem cell‐based products. We have demonstrated a novel use of 3d in vivo imaging systems to visualize medium flow and cell distribution within a complex culture platform (hollow fiber bioreactor) to aid characterization of potential spatial heterogeneity and identify potential routes of bioreactor failure or sources of variability. This can then aid process characterization and control of such systems with a view to scale‐up. Two potential sources of variation were observed with multiple bioreactors repeatedly imaged using two different imaging systems: shortcutting of medium between adjacent inlet and outlet ports with the potential to create medium gradients within the bioreactor, and localization of bioluminescent murine 4T1‐luc2 cells upon inoculation with the potential to create variable seeding densities at different points within the cell growth chamber. The ability of the imaging technique to identify these key operational bioreactor characteristics demonstrates an emerging technique in troubleshooting and engineering optimization of bioreactor performance. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:256–260, 2014  相似文献   
996.
997.
998.
WW domain‐containing oxidoreductase (WWOX) is highly conserved in both human and murine. WWOX spans the second most common human chromosomal fragile site, FRA16D, and is commonly inactivated in multiple human cancers. Modeling WWOX inactivation in mice revealed a complex phenotype including postnatal lethality, defects in bone metabolism and steroidogenesis and tumor suppressor function resulting in osteosarcomas. For better understanding of WWOX roles in different tissues at distinct stages of development and in pathological conditions, Wwox conditional knockout mice were generated in which loxp sites flank exon 1 in the Wwox allele. We demonstrated that Cre‐mediated recombination using EIIA‐Cre, a Cre line expressed in germline, results in postnatal lethality by age of 3 weeks and decreased bone mineralization resembling total ablation of WWOX as in conventional null mice. This animal model will be useful to study distinct roles of WWOX in multiple tissues at different ages. J. Cell. Physiol. 228: 1377–1382, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
999.
Although dysfunctional protein homeostasis (proteostasis) is a key factor in many age‐related diseases, the untargeted identification of structurally modified proteins remains challenging. Peptide location fingerprinting is a proteomic analysis technique capable of identifying structural modification‐associated differences in mass spectrometry (MS) data sets of complex biological samples. A new webtool (Manchester Peptide Location Fingerprinter), applied to photoaged and intrinsically aged skin proteomes, can relatively quantify peptides and map statistically significant differences to regions within protein structures. New photoageing biomarker candidates were identified in multiple pathways including extracellular matrix organisation (collagens and proteoglycans), protein synthesis and folding (ribosomal proteins and TRiC complex subunits), cornification (keratins) and hemidesmosome assembly (plectin and integrin α6β4). Crucially, peptide location fingerprinting uniquely identified 120 protein biomarker candidates in the dermis and 71 in the epidermis which were modified as a consequence of photoageing but did not differ significantly in relative abundance (measured by MS1 ion intensity). By applying peptide location fingerprinting to published MS data sets, (identifying biomarker candidates including collagen V and versican in ageing tendon) we demonstrate the potential of the MPLF webtool for biomarker discovery.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号