首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1428篇
  免费   180篇
  1608篇
  2023年   6篇
  2022年   15篇
  2021年   28篇
  2020年   15篇
  2019年   27篇
  2018年   14篇
  2017年   26篇
  2016年   42篇
  2015年   62篇
  2014年   76篇
  2013年   78篇
  2012年   117篇
  2011年   115篇
  2010年   84篇
  2009年   73篇
  2008年   84篇
  2007年   85篇
  2006年   79篇
  2005年   90篇
  2004年   51篇
  2003年   46篇
  2002年   60篇
  2001年   23篇
  2000年   24篇
  1999年   18篇
  1998年   17篇
  1997年   10篇
  1996年   12篇
  1995年   9篇
  1994年   7篇
  1992年   9篇
  1991年   19篇
  1990年   13篇
  1989年   13篇
  1988年   11篇
  1987年   14篇
  1986年   8篇
  1985年   5篇
  1984年   13篇
  1982年   7篇
  1979年   6篇
  1977年   6篇
  1976年   9篇
  1975年   4篇
  1973年   5篇
  1966年   4篇
  1938年   3篇
  1935年   3篇
  1931年   3篇
  1924年   3篇
排序方式: 共有1608条查询结果,搜索用时 10 毫秒
91.
Downstream of kinase (Dok)-related protein (DokR, also known as p56(dok)/FRIP/Dok-R) is implicated in cytokine and immunoreceptor signaling in myeloid and T cells. Tyrosine phosphorylation induces DokR to bind the signal relay molecules, RasGTPase-activating protein (RasGAP) and Nck. Here, we have examined the function of DokR during hematopoietic development and the requirement for RasGAP and Nck binding sites in its biological function. Retroviral-mediated expression of DokR in bone marrow cells dramatically inhibited their capacity to form colonies in vitro in response to the cytokines macrophage colony-stimulating factor and stem cell factor, whereas responses to interleukin-3 and granulocyte macrophage colony-stimulating factor were only weakly affected. When introduced into lethally irradiated mice, hematopoietic cells expressing DokR showed a drastically reduced capacity to repopulate lymphoid tissues. Most notably, DokR dramatically reduced repopulation of the thymus, in part by reducing the number of T cell precursors seeding in the thymus, but equally, through inhibiting the transition of CD4(-)CD8(-) to CD4(+)CD8(+) T cells. Consequently, the number of mature peripheral T cells was markedly reduced. In contrast, a minimal effect on B cell and myeloid lineage development was observed. Importantly, functional RasGAP and Nck binding sites were found to be essential for the biological effects of DokR in vitro and in vivo.  相似文献   
92.
Recent studies of Tangier disease have shown that the ATP-binding cassette transporter A1 (ABCA1)/apolipoprotein A-I (apoA-I) interaction is critical for high density lipoprotein particle formation, apoA-I integrity, and proper reverse cholesterol transport. However, the specifics of this interaction are unknown. It has been suggested that amphipathic helices of apoA-I bind to a lipid domain created by the ABCA1 transporter. Alternatively, apoA-I may bind directly to ABCA1 itself. To better understand this interaction, we created several truncation mutants of apoA-I and then followed up with more specific point mutants and helix translocation mutants to identify and characterize the locations of apoA-I required for ABCA1-mediated cholesterol efflux. We found that deletion of residues 221-243 (helix 10) abolished ABCA1-mediated cholesterol efflux from cultured RAW mouse macrophages treated with 8-bromo-cAMP. Point mutations in helix 10 that affected the helical charge distribution reduced ABCA1-mediated cholesterol efflux versus the wild type. We noted a strong positive correlation between cholesterol efflux and the lipid binding characteristics of apoA-I when mutations were made in helix 10. However, there was no such correlation for helix translocations in other areas of the protein as long as helix 10 remained intact at the C terminus. From these observations, we propose an alternative model for apolipoprotein-mediated efflux.  相似文献   
93.
94.
Soil microbes play an essential role in the forest ecosystem as an active component. This study examined the hypothesis that soil microbial community structure and metabolic activity would vary with the increasing stand ages in long-term pure plantations of Pinus elliottii. The phospholipid fatty acids (PLFA) combined with community level physiological profiles (CLPP) method was used to assess these characteristics in the rhizospheric soils of P. elliottii. We found that the soil microbial communities were significantly different among different stand ages of P. elliottii plantations. The PLFA analysis indicated that the bacterial biomass was higher than the actinomycic and fungal biomass in all stand ages. However, the bacterial biomass decreased with the increasing stand ages, while the fungal biomass increased. The four maximum biomarker concentrations in rhizospheric soils of P. elliottii for all stand ages were 18:1ω9c, 16:1ω7c, 18:3ω6c (6,9,12) and cy19:0, representing measures of fungal and gram negative bacterial biomass. In addition, CLPP analysis revealed that the utilization rate of amino acids, polymers, phenolic acids, and carbohydrates of soil microbial community gradually decreased with increasing stand ages, though this pattern was not observed for carboxylic acids and amines. Microbial community diversity, as determined by the Simpson index, Shannon-Wiener index, Richness index and McIntosh index, significantly decreased as stand age increased. Overall, both the PLFA and CLPP illustrated that the long-term pure plantation pattern exacerbated the microecological imbalance previously described in the rhizospheric soils of P. elliottii, and markedly decreased the soil microbial community diversity and metabolic activity. Based on the correlation analysis, we concluded that the soil nutrient and C/N ratio most significantly contributed to the variation of soil microbial community structure and metabolic activity in different stand ages of P. elliottii plantations.  相似文献   
95.
96.
97.
Cell wall polysaccharides are some of the most complex biopolymers known, and yet their functions remain largely mysterious. Advances in imaging methods permit direct visualisation of the molecular architecture of cell walls and the modifications that occur to polymers during growth and development. To address the structural and functional relationships of individual cell wall components, we need to better characterise a broad range of structural and architectural alterations in cell walls, appearing as a consequence of developmental regulation, environmental adaptation or genetic modification. We have developed a rapid method to screen large numbers of plants for a broad range of cell wall phenotypes using Fourier transform infrared microspectroscopy and Principal Component Analysis. We are using model systems to uncover the genes that encode some of the cell-wall-related biosynthetic and hydrolytic enzymes, and structural proteins.  相似文献   
98.
Ligand activation of fibroblast growth factor receptor-1 (FGFR-1) induces an angiogenic response following activation of multiple intracellular signaling substrates, including the Src family of nonreceptor tyrosine kinases (SFK). However, the direct association between FGFR-1 and SFK and the involvement of SFK in FGFR-1-dependent cell proliferation have been controversial. Structural variants of FGFR-1 are generated by alternative splicing which results in two major isoforms, containing either three (FGFR-1α) or two (FGFR-1β) immunoglobulin-like domains in the extracellular region. To determine whether alternatively spliced FGFR-1 isoforms differentially activate SFK, we have examined FGF receptor-negative endothelial cells stably transfected with human cDNA encoding either FGFR-1α or FGFR-1β. Transient activation of c-YES, the predominant SFK expressed in these endothelial cells, was restricted to FGFR-1β transfectants following exposure to acidic fibroblast growth factor (FGF-1). Co-immunoprecipitation studies revealed that c-YES directly associated with FGFR-1β. The Src homology (SH)2 domain (and not the SH3 domain) of c-YES was able to recognize tyrosine phosphorylated FGFR-1β. FGFR-1β-specific activation of c-YES was accompanied by its association with and activation of cortactin. FGF-1 treatment of both FGFR-1α and FGFR-1β transfectants induced SFK-independent cellular proliferation and growth in low density cultures. At high density, under both anchorage-dependent and -independent conditions, FGF-1 failed to induce proliferation and growth of FGFR-1α transfectants. In contrast, FGF-1 induced proliferation, growth, and formation of cord-like structures in high density cultures of FGFR-1β transfectants in an SFK-dependent manner. In vitro cord formation on Matrigel was restricted to FGFR-1β transfectants in an SFK-dependent manner. Formation of vascular structures in vivo was limited to endothelial cells transfected with FGFR-1β. Collectively, these results emphasize the roles of alternatively spliced FGFR-1 structural isoforms and activation of SFK as modulators of endothelial cell growth during the formation of neovascular structures.  相似文献   
99.
Legionella pneumophila is able to survive inside phagocytic cells by an internalization route that bypasses fusion of the nascent phagosome with the endocytic pathway to allow formation of a replicative phagosome. The dot/icm genes, a major virulence system of L. pneumophila, encode a type IVB secretion system that is required for intracellular growth. One Dot protein, DotL, has sequence similarity to type IV secretion system coupling proteins (T4CPs). In other systems, coupling proteins are not required for viability of the organism. Here we report the first example of a strain, L. pneumophila Lp02, in which a putative T4CP is essential for viability of the organism on bacteriological media. This result is particularly surprising since the majority of the dot/icm genes in Lp02 are dispensable for growth outside of a host cell, a condition that does not require a functional Dot/Icm secretion complex. We were able to isolate suppressors of the Delta dotL lethality and found that many contained mutations in other components of the Dot/Icm secretion system. A systematic analysis of dot/icm deletion mutants revealed that the majority of them (20 of 26) suppressed the lethality phenotype, indicating a partially assembled secretion system may be the source of Delta dotL toxicity in the wild-type strain. These results are consistent with a model in which the DotL protein plays a role in regulating the activity of the L. pneumophila type IV secretion apparatus.  相似文献   
100.
Loss of heterozygosity (LOH) of chromosomal regions is crucial in tumor progression. In this study we assessed the potential of the Affymetrix GeneChip HuSNP mapping assay for detecting genome-wide LOH in prostate tumors. We analyzed two human prostate cell lines, P69SV40Tag (P69) and its tumorigenic subline, M12, and 11 prostate cancer cases. The M12 cells showed LOH in chromosomes 3p12.1-p22.1, 11q22.1-q24.2, 19p13.12, and 19q13.42. All of the prostate cases with informative single-nucleotide polymorphism (SNP) markers showed LOH in 1p31.2, 10q11.21, 12p13.1, 16q23.1-q23.2, 17p13.3, 17q21.31, and 21q21.2. Additionally, a high percentage of cases showed LOH at 6p25.1-p25.3 (75%), 8p22-p23.2, and 10q22.1 (70%). Several tumor suppressor genes (TSGs) have been mapped in these loci. These results demonstrate that the HuSNP mapping assay can serve as an alternative to comparative genomic hybridization for assessing genome-wide LOH and can identify chromosomal regions harboring candidate TSGs implicated in prostate cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号