首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   632篇
  免费   65篇
  697篇
  2023年   5篇
  2022年   5篇
  2021年   15篇
  2020年   8篇
  2019年   3篇
  2018年   9篇
  2017年   5篇
  2016年   17篇
  2015年   24篇
  2014年   28篇
  2013年   29篇
  2012年   47篇
  2011年   33篇
  2010年   38篇
  2009年   23篇
  2008年   41篇
  2007年   28篇
  2006年   39篇
  2005年   25篇
  2004年   32篇
  2003年   29篇
  2002年   24篇
  2001年   20篇
  2000年   16篇
  1999年   15篇
  1998年   5篇
  1997年   8篇
  1996年   4篇
  1995年   8篇
  1994年   4篇
  1993年   5篇
  1992年   12篇
  1991年   9篇
  1990年   7篇
  1986年   9篇
  1984年   5篇
  1983年   4篇
  1981年   3篇
  1979年   3篇
  1978年   3篇
  1976年   4篇
  1973年   4篇
  1972年   2篇
  1970年   5篇
  1969年   3篇
  1967年   2篇
  1962年   2篇
  1959年   4篇
  1954年   2篇
  1953年   2篇
排序方式: 共有697条查询结果,搜索用时 15 毫秒
71.
72.
Saccharomyces cerevisiae expresses a 67.8 kDa homodimeric serine thioesterase, S-formylglutathione hydrolase (SFGH), that is 39.9% identical with human esterase D. Both enzymes possess significant carboxylesterase and S-formylglutathione thioesterase activity but are unusually resistant to organophosphate (OP) inhibitors. We determined the X-ray crystal structure of yeast (y) SFGH to 2.3 A resolution by multiwavelength anomalous dispersion and used the structure to guide site-specific mutagenesis experiments addressing substrate and inhibitor reactivity. Our results demonstrate a steric mechanism of OP resistance mediated by a single indole ring (W197) located in an enzyme "acyl pocket". The W197I substitution enhances ySFGH reactivity with paraoxon by >1000-fold ( k i (W197I) = 16 +/- 2 mM (-1) h (-1)), thereby overcoming natural OP resistance. W197I increases the rate of OP inhibition under pseudo-first-order conditions but does not accelerate OP hydrolysis. The structure of the paraoxon-inhibited W197I variant was determined by molecular replacement (2.2 A); it revealed a stabilized sulfenic acid at Cys60. Wild-type (WT) ySFGH is inhibited by thiol reactive compounds and is sensitive to oxidation; thus, the cysteine sulfenic acid may play a role in the regulation of a "D-type" esterase. The structure of the W197I variant is the first reported cysteine sulfenic acid in a serine esterase. We constructed five Cys60/W197I variants and show that introducing a positive charge near the oxyanion hole, W197I/C60R or W197I/C60K, results in a further enhancement of the rates of phosphorylation with paraoxon ( k i = 42 or 80 mM (-1) h (-1), respectively) but does not affect the dephosphorylation of the enzyme. We also characterized three histidine substitutions near the oxyanion hole, G57H, L58H, and M162H, which significantly decrease esterase activity.  相似文献   
73.
Antibody to uncoupling protein (UCP) purified from rat brown adipose tissue (BAT) was raised in rabbits and an enzyme linked immunosorbent assay was developed. The antiserum did not cross-react with other mitochondrial proteins from BAT and from other tissues but cross-reacted with UCP from hamster, guinea pig and mouse. The assay is capable of detecting 5 ng of UCP. Using this assay and a crude mitochondrial preparation, UCP content of BAT was shown to increase during cold adaptation.  相似文献   
74.
The size increase of skin epithelial cells during aging is well-known. Here we demonstrate that treatment of aging cells with cytochalasin B substantially decreases cell size. This decrease was demonstrated on a mouse model and on human skin cells in vitro. Six nude mice were treated by topical application of cytochalasin B on skin of the dorsal left midsection for 140 days (the right side served as control for placebo treatment). An average decrease in cell size of 56±16% resulted. A reduction of cell size was also observed on primary human skin epithelial cells of different in vitro age (passages from 1 to 8). A cell strain obtained from a pool of 6 human subjects was treated with cytochalasin B in vitro for 12 hours. We observed a decrease in cell size that became statistically significant and reached 20–40% for cells of older passage (6–8 passages) whereas no substantial change was observed for younger cells. These results may be important for understanding the aging processes, and for cosmetic treatment of aging skin.  相似文献   
75.
The development and synthesis of potent p38α MAP kinase inhibitors containing a 2H-quinolizin-2-one platform is described. Evolution of the 2H-quinolizin-2-one series from an early lead to solving off target activity and pharmacokinetic issues is also discussed.  相似文献   
76.
77.
The ubiquitination of the receptor that mediates signaling induced by the polypeptide pituitary hormone prolactin (PRL) has been shown to lead to the degradation of this receptor and to the ensuing negative regulation of cellular responses to PRL. However, the mechanisms of PRL receptor (PRLr) proteolysis remain largely to be determined. Here we provide evidence that PRLr is internalized and primarily degraded via the lysosomal pathway. Ubiquitination of PRLr is essential for the rapid internalization of PRLr, which proceeds through a pathway dependent on clathrin and the assembly polypeptide 2 (AP2) adaptor complexes. Recruitment of AP2 to PRLr is stimulated by PRLr ubiquitination, which also is required for the targeting of already internalized PRLr to the lysosomal compartment. While mass spectrometry analysis revealed that both monoubiquitination and polyubiquitination (via both K48- and K63-linked chains) occur on PRLr, the results of experiments using forced expression of ubiquitin mutants indicate that PRLr polyubiquitination via K63-linked chains is important for efficient interaction of PRLr with AP2 as well as for efficient internalization, postinternalization sorting, and proteolytic turnover of PRLr. We discuss how specific ubiquitination may regulate early and late stages of endocytosis of PRLr and of related receptors to contribute to the negative regulation of the magnitude and duration of downstream signaling.  相似文献   
78.
79.
The paramagnetic metal ion Mn2+ has been used to probe the electrostatic potentials of a DNA quadruplex that has two quartets with an overall fold of the chair type. A quadruplex with a basket type structure has also been examined. The binding of the paramagnetic ion manganese to these quadruplex DNAs has been investigated by solution state electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies. The EPR results indicate that the DNA aptamer, d(GGTTGGTGTGGTTGG), binds two manganese ions and that the binding constants for each of these sites is approximately 10(5) M-1. The NMR results indicate that the binding sites of the manganese are in the narrow grooves of this quadruplex DNA. The binding sites of the DNA quadruplex formed by dimers of d(GGGGTTTTGGGG) which forms a basket structure are also in the narrow groove. These results indicate that the close approach of phosphates in the narrow minor grooves of the quadruplex structures provide strong binding sites for the manganese ions and that EPR and NMR monitoring of manganese binding can be used to distinguish between the different types of quadruplex structures.  相似文献   
80.
The Woronin body is a dense-core vesicle specific to filamentous ascomycetes (Euascomycetes), where it functions to seal the septal pore in response to cellular damage. The HEX-1 protein self-assembles to form this solid core of the vesicle. Here, we solve the crystal structure of HEX-1 at 1.8 A, which provides the structural basis of its self-assembly. The structure reveals the existence of three intermolecular interfaces that promote the formation of a three-dimensional protein lattice. Consistent with these data, self-assembly is disrupted by mutations in intermolecular contact residues and expression of an assembly-defective HEX-1 mutant results in the production of aberrant Woronin bodies, which possess a soluble noncrystalline core. This mutant also fails to complement a hex-1 deletion in Neurospora crassa, demonstrating that the HEX-1 protein lattice is required for Woronin body function. Although both the sequence and the tertiary structure of HEX-1 are similar to those of eukaryotic initiation factor 5A (eIF-5A), the amino acids required for HEX-1 self-assembly and peroxisomal targeting are absent in eIF-5A. Thus, we propose that a new function has evolved following duplication of an ancestral eIF-5A gene and that this may define an important step in fungal evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号