首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3372篇
  免费   191篇
  国内免费   1篇
  3564篇
  2022年   33篇
  2021年   60篇
  2020年   32篇
  2019年   48篇
  2018年   52篇
  2017年   63篇
  2016年   78篇
  2015年   112篇
  2014年   129篇
  2013年   157篇
  2012年   219篇
  2011年   192篇
  2010年   125篇
  2009年   106篇
  2008年   150篇
  2007年   125篇
  2006年   113篇
  2005年   110篇
  2004年   100篇
  2003年   72篇
  2002年   81篇
  2001年   90篇
  2000年   64篇
  1999年   70篇
  1998年   31篇
  1997年   30篇
  1996年   25篇
  1995年   25篇
  1992年   50篇
  1991年   61篇
  1990年   45篇
  1989年   55篇
  1988年   39篇
  1987年   48篇
  1986年   31篇
  1985年   73篇
  1984年   46篇
  1983年   52篇
  1982年   26篇
  1981年   30篇
  1980年   41篇
  1979年   53篇
  1978年   33篇
  1976年   25篇
  1975年   27篇
  1974年   32篇
  1973年   28篇
  1971年   34篇
  1970年   29篇
  1969年   33篇
排序方式: 共有3564条查询结果,搜索用时 15 毫秒
111.
The present study was aimed to evaluate the effect of different seed priming methods to enhance the sodium chloride (NaCl) and polyethylene glycol-8000 (PEG-8000) stress tolerance in Indian mustard (Brassica juncea L.). Seeds subjected to different priming treatments such as water (hydro-priming), calcium chloride (CaCl2) (chemo-priming), and abscisic acid (ABA) (hormonal-priming) showed increased rate of germination as compared to non-primed seeds. The primed and non-primed seeds were grown for 15 days and then the seedlings were independently subjected to iso-osmotic salt (150 mM NaCl) or PEG-8000 (20%) stress. The different biochemical responses were studied 10 days after treatment. Under NaCl and PEG stress, the dry weight and total chlorophyll content were higher in primed sets as compared to non-primed treatment which was also evident by the phenotype of the seedlings. In general, the higher activities of superoxide dismutase and glutathione reductase resulted in lower oxidative damage, in terms of malondialdehyde content, under NaCl and PEG stress in hydro-primed set as compared to non-primed, ABA-, and CaCl2-primed treatments. Besides, the level of total phenolics and accumulation of osmolytes such as free proline, glycine betaine, and total soluble sugars was also lower in hydro-primed set as compared to other primed and non-primed treatments. The study thus suggests the use of hydro-priming as a simple and cost-effective strategy to alleviate the NaCl and PEG induced stress in B. juncea.  相似文献   
112.
NADH specific glutamate dehydrogenase (GDH) activity was examined in roots and shoots of maize seedlings grown in half-strength Hoagland’s solution containing NH4NO3 as sole nitrogen source under irradiance of 60 W m−2 and temperature of 25±2°C. When 5,5′-dithio-bis (2-nitrobenzoic acid) (DTNB) was supplied to the assay mixture, it inhibited NADH-GDH activity in both roots and shoots, irrespective of whether the enzymes were extracted from light- or dark-treated roots and shoots. In each case the inhibition increased with the increase in DTNB concentration. At the maximum concentration of DTNB used (20 μM) the inhibition of shoot NADH-GDH was more pronounced than inhibition of root enzyme. This indicated differences in shoot and root NADH-GDH.  相似文献   
113.

Background  

Chlamydial Inclusion membrane proteins (Incs), are involved in biochemical interactions with host cells and infecting Chlamydiae. We have previously reported the role of two Chlamydia trachomatis (CT) Incs, namely IncB and IncC in generating host immunity in CT infected women. Emerging data shows involvement of Inc stimulated CD4 positive T cells in aiding host immunity in infected fertile and infertile women through the secretion of interferon gamma. However the lack of data on the intra-cytokine interplay to these Incs in infected cell milieu prompted us to investigate further.  相似文献   
114.
The role of cytochrome c (Cyt c) in caspase activation has largely been established from mammalian cell-culture studies, but much remains to be learned about its physiological relevance in situ. The role of Cyt c in invertebrates has been subject to considerable controversy. The Drosophila genome contains distinct cyt c genes: cyt c-p and cyt c-d. Loss of cyt c-p function causes embryonic lethality owing to a requirement of the gene for mitochondrial respiration. By contrast, cyt c-d mutants are viable but male sterile. Here, we show that cyt c-d regulates developmental apoptosis in the pupal eye. cyt c-d mutant retinas show a profound delay in the apoptosis of superfluous interommatidial cells and perimeter ommatidial cells. Furthermore, there is no apoptosis in mutant retinal tissues for the Drosophila homologues of apoptotic protease-activating factor 1 (Ark) and caspase 9 (Dronc). In addition, we found that cyt c-d--as with ark and dronc-regulates scutellar bristle number, which is known to depend on caspase activity. Collectively, our results indicate a role of Cyt c in caspase regulation of Drosophila somatic cells.  相似文献   
115.
International Journal of Peptide Research and Therapeutics - Antimicrobial peptides (AMPs) offer a potent and effective alternative for treatment of antibiotic resistant microbes. Mastoparans or...  相似文献   
116.
The purpose of the study was to compare the effects of deamidation alone, truncation alone, or both truncation and deamidation on structural and functional properties of human lens alphaA-crystallin. Specifically, the study investigated whether deamidation of one or two sites in alphaA-crystallin (i.e., alphaA-N101D, alphaA-N123D, alphaA-N101/123D) and/or truncation of the N-terminal domain (residues 1-63) or C-terminal extension (residues 140-173) affected the structural and functional properties relative to wild-type (WT) alphaA. Human WT-alphaA and human deamidated alphaA (alphaA-N101D, alphaA-N123D, alphaA-N101/123D) were used as templates to generate the following eight N-terminal domain (residues 1-63) deleted or C-terminal extension (residues 140-173) deleted alphaA mutants and deamidated plus N-terminal domain or C-terminal extension deleted mutants: (i) alphaA-NT (NT, N-terminal domain deleted), (ii) alphaA-N101D-NT, (iii) alphaA-N123D-NT, (iv) alphaA-N101/123D-NT, (v) alphaA-CT (CT, C-terminal extension deleted), (vi) alphaA-N101D-CT, (vii) alphaA-N123D-CT, and (viii) alphaA-N101/123D-CT. All of the proteins were purified and their structural and functional (chaperone activity) properties determined. The desired deletions in the alphaA-crystallin mutants were confirmed by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometric analysis. Relative to WT-alphaA homomers, the mutant proteins exhibited major structural and functional changes. The maximum decrease in chaperone activity in homomers occurred on deamidation of N123 residue, but it was substantially restored after N- or C-terminal truncations in this mutant protein. Far-UV circular dichroism (CD) spectral analyses generally showed an increase in the beta-contents in alphaA mutants with deletions of N-terminal domain or C-terminal extension and also with deamidation plus above N- or C-terminal deletions. Intrinsic tryptophan (Trp) and total fluorescence spectral studies suggested altered microenvironments in the alphaA mutant proteins. Similarly, the ANS (8-anilino-1-naphthalenesulfate) binding showed generally increased fluorescence with blue shift on deletion of the N-terminal domain in the deamidated mutant proteins, but opposite effects were observed on deletion of the C-terminal extension. Molecular mass, polydispersity of homomers, and the rate of subunit exchange with WT-alphaB-crystallin increased on deletion of the C-terminal extension in the deamidated alphaA mutants, but on N-terminal domain deletion these values showed variable results based on the deamidation site. In summary, the data suggested that the deamidation alone showed greater effect on chaperone activity than the deletion of N-terminal domain or C-terminal extension of alphaA-crystallin. The N123 residue of alphaA-crystallin plays a crucial role in maintaining its chaperone function. However, both the N-terminal domain and C-terminal extension are also important for the chaperone activity of alphaA-crystallin because the activity was partially or fully recovered following either deletion in the alphaA-N123D mutant. The results of subunit exchange rates among alphaA mutants and WT-alphaB suggested that such exchange is an important determinant in maintenance of chaperone activity following deamidation and/or deletion of the N-terminal domain or C-terminal extension in alphaA-crystallin.  相似文献   
117.

Background

Long-term and unresolved airway inflammation and airway remodeling, characteristic features of chronic asthma, if not treated could lead to permanent structural changes in the airways. Aldose reductase (AR), an aldo-sugar and lipid aldehyde metabolizing enzyme, mediates allergen-induced airway inflammation in mice, but its role in the airway remodeling is not known. In the present study, we have examined the role of AR on airway remodeling using ovalbumin (OVA)-induced chronic asthma mouse model and cultured human primary airway epithelial cells (SAECs) and mouse lung fibroblasts (mLFs).

Methods

Airway remodeling in chronic asthma model was established in mice sensitized and challenged twice a week with OVA for 6 weeks. AR inhibitor, fidarestat, was administered orally in drinking water after first challenge. Inflammatory cells infiltration in the lungs and goblet cell metaplasia, airway thickening, collagen deposition and airway hyper-responsiveness (AHR) in response to increasing doses of methacholine were assessed. The TGFβ1-induced epithelial-mesenchymal transition (EMT) in SAECs and changes in mLFs were examined to investigate AR-mediated molecular mechanism(s) of airway remodeling.

Results

In the OVA-exposed mice for 6 wks inflammatory cells infiltration, levels of inflammatory cytokines and chemokines, goblet cell metaplasia, collagen deposition and AHR were significantly decreased by treatment with AR inhibitor, fidarestat. Further, inhibition of AR prevented TGFβ1-induced altered expression of E-cadherin, Vimentin, Occludin, and MMP-2 in SAECs, and alpha-smooth muscle actin and fibronectin in mLFs. Further, in SAECs, AR inhibition prevented TGFβ1- induced activation of PI3K/AKT/GSK3β pathway but not the phosphorylation of Smad2/3.

Conclusion

Our results demonstrate that allergen-induced airway remodeling is mediated by AR and its inhibition blocks the progression of remodeling via inhibiting TGFβ1-induced Smad-independent and PI3K/AKT/GSK3β-dependent pathway.  相似文献   
118.
Degeneration of the intervertebral discs (IVD) is a leading cause of neck and low back pain. Degeneration begins in the central nucleus pulposus region, leading to loss of IVD osmotic properties. Regeneration approaches include administration of matrix-mimicking scaffolds, cells and/or therapeutic factors. Cell-targeting strategies are likely to improve delivery due to the low cell numbers in the IVD. Single-chain antibody fragments (scFvs) that bind IVD cells were isolated for potential delivery of therapeutics to degenerated IVD. The most cell-distal domain of neural cell adhesion molecule 1 (NCAM1) was cloned and expressed in Escherichia coli. Phage display technology was used to isolate a human scFv against the recombinant domain by panning a scFv library on the immobilised protein. The isolated scFv bound cultured rat astrocytes, as well as bovine nucleus pulposus and annulus fibrosus cells in immunocytochemical studies. The scFv also labelled cells in bovine spinal cord and six-month and two-year old bovine IVD sections by immunohistochemistry. Antibody fragments can provide cell-binding moieties at improved cost, time, yield and functionalisation potential over whole antibodies. The described scFv has potential application in delivery of therapeutics to NCAM1-expressing cells in degenerated IVD.  相似文献   
119.
The active principle in a methanolic extract of the laboratory-grown cyanobacterium, Fischerella sp. isolated from Neem (Azadirachta indica) tree bark was active against Mycobacterium tuberculosis, Enterobacter aerogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhi, Escherichia coli as well as three multi-drug resistant E. coli strains in in vitro assays. Based on MS, UV, IR 1H NMR analyses the active principle is proposed to be hapalindole T having the empirical formula C21H23N2ClSO and a molecular weight of 386 with the melting point range 179–182 °C. The estimated production of Hapalindole T from the cyanobacterium is 1.25 mg g−1 lyophilized biomass. It is suggested that cyanobacteria colonizing specialized niches such as tree bark could be an antibacterial drug resource.  相似文献   
120.
Metal species released into the environment by technological activities tend to persist indefinitely, circulating and eventually accumulating throughout the food chain, thus becoming a serious threat to the environment. Environment pollution by toxic metals occurs globally through military, industrial, and agricultural processes and waste disposal. Bioremediation processes are the target of recent research and are considered low-cost, ecofriendly methods to alleviate the current problems of water decontamination, particularly for remote and rural areas. The present piece of work reports the unexploited sorption properties of the powdered seed of the plant Moringa oleifera (SMOS) for the removal of Arsenic [As(III) and As(V)] from aqueous solutions. Sorption studies, using standard practices, result in the standardization of optimum conditions such as biomass dosages (2.0 g), metal concentrations (25 ppm), contact time (60 min) and volume of the test solutions (200 ml) at pH 7.5, for As(III) and pH 2.5 for As(V). Maximum sorption for As(III) and As(V) species is 60.21 and 85.6%, respectively. Protein/Amino acid-Arsenic interactions are found to play an important role in the biosorption process using plant biomass SMOS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号