首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   3篇
  32篇
  2018年   1篇
  2012年   1篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2003年   2篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1992年   2篇
  1987年   1篇
排序方式: 共有32条查询结果,搜索用时 0 毫秒
31.
Arachidonic acid is an essential constituent of cell membranes that is esterified to the sn-2 position of glycerophospholipids and is released from selected phospholipid pools by tightly regulated phospholipase cleavage. Metabolism of the released arachidonic acid by the cytochrome P450 enzyme system (cP450) generates biologically active compounds, including epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids. Here we report that 2-(14,15-epoxyeicosatrienoyl)glycerol (2-14,15-EG), a novel cP450 arachidonate metabolite produced in the kidney, is a potent mitogen for renal proximal tubule cells. This effect is mediated by activation of tumor necrosis factor alpha-converting enzyme (ADAM17), which cleaves membrane-bound transforming growth factor alpha (proTGF-alpha) and releases soluble TGF-alpha as a ligand that binds and activates epidermal growth factor receptor (EGFR). The present studies additionally demonstrate that the structurally related 14,15-EET stimulates release of soluble heparin-binding EGF-like growth factor as an EGFR ligand by activation of ADAM9, another member of the ADAM family. Thus, in addition to the characterization of 2-14,15-EG's mitogenic activity and signaling mechanism, our study provides the first example that two structurally related biologically active lipid mediators can activate different metalloproteinases and release different EGFR ligands in the same cell type to activate EGFR and stimulate cell proliferation.  相似文献   
32.
Arachidonic acid (AA) causes endothelium-dependent smooth muscle hyperpolarizations and relaxations that are mediated by a 15-lipoxygenase-I (15-LO-I) metabolite, 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA). We propose that AA is metabolized sequentially by 15-LO-I and hydroperoxide isomerase to an unidentified hydroxyepoxyeicosatrienoic acid (HEETA), which is hydrolyzed by a soluble epoxide hydrolase (sEH) to 11,12,15-THETA. After incubation of aorta with 14C-labeled AA, metabolites were extracted and the HEETAs were resolved by performing HPLC. Mass spectrometric analyses identified 15-Hydroxy-11,12-epoxyeicosatrienoic acid (15-H-11,12-EETA). Incubation of aortic incubates with methanol and acetic acid trapped the acid-sensitive 15-H-11,12-EETA as methoxydihydroxyeicosatrienoic acids (MDHEs) (367 m/z, M-H). Pretreatment of the aortic tissue with the sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA; 10(-6) M) increased the formation of 15-H-11,12-EETA, measured as MDHEs. Thus 15-H-11,12-EETA is an acid- and sEH-sensitive precursor of 11,12,15-THETA. Aortic homogenates and endothelial cells contain a 57-kDa protein corresponding to the rabbit sEH. In preconstricted aortic rings, AA (10(-7)-10(-4) M) and acetylcholine (10(-9)-10(-6) M) caused concentration-related relaxations that were enhanced by pretreatment with AUDA. These enhanced relaxations were inhibited by increasing extracellular [K(+)] from 4.8 to 20 mM. AA (3 x 10(-6) M) induced cell membrane hyperpolarization (from -31.0 +/- 1 to -46.8 +/- 2 mV) in aortic strips with an intact endothelium, which was enhanced by AUDA. These results indicate that 15-H-11,12-EETA is produced by the aorta, hydrolyzed by sEH to 11,12,15-THETA, and mediates relaxations by membrane hyperpolarization. 15-H-11,12-EETA represents an endothelium-derived hyperpolarizing factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号