首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   962篇
  免费   67篇
  1029篇
  2023年   6篇
  2022年   19篇
  2021年   30篇
  2020年   19篇
  2019年   17篇
  2018年   24篇
  2017年   14篇
  2016年   19篇
  2015年   42篇
  2014年   47篇
  2013年   66篇
  2012年   85篇
  2011年   82篇
  2010年   47篇
  2009年   34篇
  2008年   54篇
  2007年   53篇
  2006年   43篇
  2005年   45篇
  2004年   41篇
  2003年   44篇
  2002年   34篇
  2001年   14篇
  2000年   10篇
  1999年   13篇
  1998年   6篇
  1997年   11篇
  1996年   8篇
  1995年   4篇
  1994年   5篇
  1993年   8篇
  1992年   7篇
  1991年   9篇
  1990年   7篇
  1989年   8篇
  1988年   8篇
  1987年   5篇
  1986年   8篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1981年   4篇
  1978年   4篇
  1977年   2篇
  1974年   2篇
  1968年   3篇
  1967年   2篇
  1965年   3篇
  1941年   1篇
  1940年   1篇
排序方式: 共有1029条查询结果,搜索用时 15 毫秒
11.
All living organisms communicate with the external environment for their survival and existence. In prokaryotes, communication is achieved by two-component systems (TCS) comprising histidine kinases and response regulators. In eukaryotes, signalling is accomplished by serine/threonine and tyrosine kinases. Although TCS and serine/threonine kinases coexist in prokaryotes, direct cross-talk between these families was first described in Group B Streptococcus (GBS). A serine/threonine kinase (Stk1) and a TCS (CovR/CovS) co-regulate toxin expression in GBS. Typically, promoter binding of regulators like CovR is controlled by phosphorylation of the conserved active site aspartate (D53). In this study, we show that Stk1 phosphorylates CovR at threonine 65. The functional consequence of threonine phosphorylation of CovR in GBS was evaluated using phosphomimetic and silencing substitutions. GBS encoding the phosphomimetic T65E allele are deficient for CovR regulation unlike strains encoding the non-phosphorylated T65A allele. Further, compared with wild-type or T65A CovR, the T65E CovR is unable to bind promoter DNA and is decreased for phosphorylation at D53, similar to Stk1-phosphorylated CovR. Collectively, we provide evidence for a novel mechanism of response regulator control that enables GBS (and possibly other prokaryotes) to fine-tune gene expression for environmental adaptation.  相似文献   
12.
Sriram G  Birge RB 《FEBS letters》2012,586(17):2615-2618
Since their discovery as cellular counterparts of viral oncogenes more than two decades ago, enormous progress has been made in unraveling the complex regulatory pathways of signal transduction initiated by the Crk family of proteins. New structural and biochemical studies have uncovered novel insights into both negative and positive regulation of Crk mediated by its atypical carboxyl-terminal SH3 domain (SH3C). Moreover, SH3C is tyrosine phosphorylated by receptor tyrosine kinases and non-receptor tyrosine kinases, thereby permitting assemblages of other SH2/PTB domain containing proteins. Such non-canonical signaling by the Crk SH3C reveals new regulatory strategies for adaptor proteins.  相似文献   
13.
14.
Alternative methods of oxygen supply are of crucial importance, especially in viscous fermentations and shear-sensitive fermentations. A method of oxygen supply that completely eliminates the gas-liquid transport resistance has been presented. The method involves a need-based liquid-phase decomposition of hydrogen peroxide to provide the necessary oxygen. When Xanthomonas campestris was cultivated (viscous cultivation) using this method of oxygen supply, dissolved oxygen (DO) levels were maintained above the setpoint of 50% throughout the cultivation, whereas the conventional cultivation was able to meet culture oxygen demand only for about 6 h in a 72-h fermentation. Furthermore, the maximum specific growth rate and xanthan yields in the novel cultivation were 89% and 169%, respectively, of those obtained in conventional cultivation. A mathematical model was also developed to simulate and predict results in fermentations employing the presented methodology. In addition, studies with HOCl pretreatments indicated that monofunctional catalase may be responsible for the decomposition of H2O2 supplied externally to cells; HOCl pretreatments also increased the tolerance of cells to H2O2. The decomposition kinetics of externally supplied H2O2 was Michaelis-Menten in nature with vmax = 1.196 x 10(-6) M s-1 and Km = 0.21 mM. The catalase concentration was estimated to be 3.4 x 10(-10) mol/g of cells. Copyright 1998 John Wiley & Sons, Inc.  相似文献   
15.
We report the development of a novel, multi-specimen imaging system for high-throughput transmission electron microscopy. Our cartridge-based loading system, called the "Gatling", permits the sequential examination of as many as 100 specimens in the microscope for room temperature electron microscopy using mechanisms for rapid and automated specimen exchange. The software for the operation of the Gatling and automated data acquisition has been implemented in an updated version of our in-house program AutoEM. In the current implementation of the system, the time required to deliver 95 specimens into the microscope and collect overview images from each is about 13 h. Regions of interest are identified from a low magnification atlas generation from each specimen and an unlimited number of higher magnifications images can be subsequently acquired from these regions using fully automated data acquisition procedures that can be controlled from a remote interface. We anticipate that the availability of the Gatling will greatly accelerate the speed of data acquisition for a variety of applications in biology, materials science, and nanotechnology that require rapid screening and image analysis of multiple specimens.  相似文献   
16.
All organisms possess fundamental metabolic pathways to ensure that needed carbon and sulfur compounds are provided to the cell in the proper chemical form and oxidation state. For most organisms capable of using CO2 as sole source of carbon, ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) catalyzes primary carbon dioxide assimilation. In addition, sulfur salvage pathways are necessary to ensure that key sulfur-containing compounds are both available and, where necessary, detoxified in the cell. Using knock-out mutations and metabolomics in the bacterium Rhodospirillum rubrum, we show here that Rubisco concurrently catalyzes key and essential reactions for seemingly unrelated but physiologically essential central carbon and sulfur salvage metabolic pathways of the cell. In this study, complementation and mutagenesis studies indicated that representatives of all known extant functional Rubisco forms found in nature are capable of simultaneously catalyzing reactions required for both CO2-dependent growth as well as growth using 5-methylthioadenosine as sole sulfur source under anaerobic photosynthetic conditions. Moreover, specific inactivation of the CO2 fixation reaction did not affect the ability of Rubisco to support anaerobic 5-methylthioadenosine metabolism, suggesting that the active site of Rubisco has evolved to ensure that this enzyme maintains both key functions. Thus, despite the coevolution of both functions, the active site of this protein may be differentially modified to affect only one of its key functions.  相似文献   
17.
Leukemoid reaction like leukemia indicates noticeable increased count of WBCs (White Blood Cells) but the cause of it is due to severe inflammation or infections in other body regions. In automatic diagnosis in classifying leukemia and leukemoid reactions, ALL IDB2 (Acute Lymphoblastic Leukemia-Image Data Base) dataset has been used which comprises 110 training images of blast cells and healthy cells. This paper aimed at an automatic process to distinguish leukemia and leukemoid reactions from blood smear images using Machine Learning. Initially, automatic detection and counting of WBC is done to identify leukocytosis and then an automatic detection of WBC blasts is performed to support classification of leukemia and leukemoid reactions. Leukocytosis is commonly observed both in leukemia and leukemoid hence physicians may have chance of wrong diagnosis of malignant leukemia for the patients with leukemoid reactions. BCCD (blood cell count detection) Dataset has been used which has 364 blood smear images of which 349 are of single WBC type. The Image segmentation algorithm of Hue Saturation Value color based on watershed has been applied. VGG16 (Visual Geometric Group) CNN (Convolution Neural Network) architecture based deep learning technique is being incorporated for classification and counting WBC type from segmented images. The VGG16 architecture based CNN used for classification and segmented images obtained from first part were tested to identify WBC blasts.  相似文献   
18.
Two multisubunit protein complexes for membrane protein insertion were recently identified in the endoplasmic reticulum (ER): the guided entry of tail anchor proteins (GET) complex and ER membrane complex (EMC). The structures of both of their hydrophobic core subunits, which are required for the insertion reaction, revealed an overall similarity to the YidC/Oxa1/Alb3 family members found in bacteria, mitochondria, and chloroplasts. This suggests that these membrane insertion machineries all share a common ancestry. To test whether these ER proteins can functionally replace Oxa1 in yeast mitochondria, we generated strains that express mitochondria-targeted Get2–Get1 and Emc6–Emc3 fusion proteins in Oxa1 deletion mutants. Interestingly, the Emc6–Emc3 fusion was able to complement an Δoxa1 mutant and restored its respiratory competence. The Emc6–Emc3 fusion promoted the insertion of the mitochondrially encoded protein Cox2, as well as of nuclear encoded inner membrane proteins, although was not able to facilitate the assembly of the Atp9 ring. Our observations indicate that protein insertion into the ER is functionally conserved to the insertion mechanism in bacteria and mitochondria and adheres to similar topological principles.

Redirecting the core subunits of the protein membrane insertion complex EMC into mitochondria rescues cells deficient for the mitochondrial Oxa1 system; this supports the hypothesis that the machinery for protein insertion into the ER membrane is functionally analogous to the YidC/Oxa1/Alb3 family of bacteria, mitochondria and chloroplasts.  相似文献   
19.
We have explored a general approach for the determination of absolute amounts and the relative stoichiometry of proteins in a mixture using fluorescence and mass spectrometry. We engineered a gene to express green fluorescent protein (GFP) with a synthetic fusion protein (GAB-GFP) in Escherichia coli to function as a spectroscopic standard for the quantification of an analogous stable isotope-labeled, non-fluorescent fusion protein (GAB*) and for the quantification and stoichiometric analysis of purified transducin, a heterotrimeric G-protein complex. Both GAB-GFP and GAB* contain concatenated sequences of specific proteotypic peptides that are derived from the alpha, beta, and gamma protein subunits of transducin and that are each flanked by spacer regions that maintain the native proteolytic properties for these peptide fragments. Spectroscopic quantification of GAB-GFP provided a molar scale for mass spectrometric ratios from tryptic peptides of GAB* and defined molar responses for mass spectrometric signal intensities from a purified transducin complex. The stoichiometry of transducin subunits alpha, beta, and gamma was measured to be 1:1.1:1.15 over a 5-fold range of labeled internal standard with a relative standard deviation of 9%. Fusing a unique genetically coded spectroscopic signal element with concatenated proteotypic peptides provides a powerful method to accurately quantify and determine the relative stoichiometry of multiple proteins present in complexes or mixtures that cannot be readily assessed using classical gravimetric, enzymatic, or antibody-based technologies.  相似文献   
20.
Influenza viruses: transmission between species   总被引:3,自引:0,他引:3  
The only direct evidence for transmission of influenza viruses between species comes from studies on swine influenza viruses. Antigenically and genetically identical Hsw1N1 influenza viruses were isolated from pigs and man on the same farm in Wisconsin, U.S.A. The isolation of H3N2 influenza viruses from a wide range of lower animals and birds suggests that influenza viruses of man can spread to the lower orders. Under some conditions the H3N2 viruses can persist for a number of years in some species. The isolation, from aquatic birds, of a large number of influenza A viruses that possess surface proteins antigenically similar to the viruses isolated from man, pigs and horses provides indirect evidence for inter-species transmission. There is now a considerable body of evidence which suggests that influenza viruses of lower animals and birds may play a role in the origin of some of the pandemic strains of influenza A viruses. There is no direct evidence that the influenza viruses in aquatic birds are transmitted to man, but they may serve as a genetic pool from which some genes may be introduced into humans by recombination. Preliminary evidence suggests that the molecular basis of host range and virulence may be related to the RNA segments coding for one of the polymerase proteins (P3) and for the nucleoprotein (NP).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号