首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   32篇
  2023年   3篇
  2022年   11篇
  2021年   17篇
  2020年   5篇
  2019年   9篇
  2018年   13篇
  2017年   10篇
  2016年   9篇
  2015年   29篇
  2014年   30篇
  2013年   45篇
  2012年   53篇
  2011年   44篇
  2010年   27篇
  2009年   18篇
  2008年   32篇
  2007年   32篇
  2006年   21篇
  2005年   20篇
  2004年   26篇
  2003年   21篇
  2002年   13篇
  2001年   9篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有546条查询结果,搜索用时 15 毫秒
131.
Finding subtle motifs by branching from sample strings   总被引:1,自引:0,他引:1  
Many motif finding algorithms apply local search techniques to a set of seeds. For example, GibbsDNA (Lawrence et al. 1993, Science, 262, 208-214) applies Gibbs sampling to random seeds, and MEME (Bailey and Elkan, 1994, Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology (ISMB-94), 28-36) applies the EM algorithm to selected sample strings, i.e. substrings of the sample. In the case of subtle motifs, recent benchmarking efforts show that both random seeds and selected sample strings may never get close to the globally optimal motif. We propose a new approach which searches motif space by branching from sample strings, and implement this idea in both pattern-based and profile-based settings. Our PatternBranching and ProfileBranching algorithms achieve favorable results relative to other motif finding algorithms. Availability: http://www-cse.ucsd.edu/groups/bioinformatics/software.html  相似文献   
132.
An important criterion in design of acylation agents for the radioiodination of internalizing monoclonal antibodies (mAbs) is to maximize the retention of radioiodine in the tumor following mAb intracellular processing. We have previously shown that labeling methods that generate positively charged catabolites have enhanced tumor retention. Herein we have extended this strategy to investigate the potential utility of labeling internalizing mAbs with an acylation agent that yielded labeled catabolites that would be negatively charged at lysosomal pH. The negatively charged acylation agent, N-succinimidyl 3-[(131)I]iodo-4-phosphonomethylbenzoate ([(131)I]SIPMB), was prepared from its tin precursor, N-succinimidyl 4-di-tert-butylphosphonomethyl-3-trimethylstannylbenzoate (tBu-SPMTB), in 40% radiochemical yield. The free acid, 3-[(131)I]iodo-4-phosphonomethylbenzoic acid ([(131)I]IPMBA), was also prepared from the corresponding precursor, 4-di-tert-butylphosphonomethyl-3-trimethylstannylbenzoic acid (tBu-PMTBA), in 80% radiochemical yield. The rapidly internalizing mAb L8A4 was conjugated to [(131)I]SIPMB in 25-40% yield with preservation of its immunoreactivity. Internalization and processing in the U87DeltaEGFR glioma cell line was studied in a paired label format with L8A4 labeled with (125)I using the Iodogen method. Retention of initially bound radioactivity in these cells at 24 h from [(131)I]SIPMB-labeled mAb was approximately 6-fold higher than that for directly labeled mAb. Catabolite analysis demonstrated that this difference reflected an order of magnitude higher retention of low molecular weight species in these cells. The [(131)I]SIPMB-L8A4 conjugate was intact over the first 2 h; thereafter, lysine-[(131)I]SIPMB was the predominant catabolite. In contrast, L8A4 labeled using Iodogen rapidly gave rise to mono-[(125)I]iodotyrosine within 2 h, which then cleared rapidly from the cells. These results suggest that SIPMB could be a potent candidate for labeling internalizing mAbs and warrant further study.  相似文献   
133.
Cryo-electron microscopy of "single particles" is a powerful method to analyze structures of large macromolecular assemblies that are not amenable to investigation by traditional X-ray crystallographic methods. A key step in these studies is to obtain atomic interpretations of multiprotein complexes by fitting atomic structures of individual components into maps obtained from electron microscopic data. Here, we report the use of a "core-weighting" method, combined with a grid-threading Monte Carlo (GTMC) approach for this purpose. The "core" of an individual structure is defined to represent the part where the density distribution is least likely to be altered by other components that comprise the macromolecular assembly of interest. The performance of the method has been evaluated by its ability to determine the correct fit of (i) the alpha-chain of the T-cell receptor variable domain into a simulated map of the alphabeta complex at resolutions between 5 and 40 A, and (ii) the E2 catalytic domain of the pyruvate dehydrogenase into an experimentally determined map, at 14 A resolution, of the icosahedral complex formed by 60 copies of this enzyme. Using the X-ray structures of the two test cases as references, we demonstrate that, in contrast to more traditional methods, the combination of the core-weighting method and the grid-threading Monte Carlo approach can identify the correct fit reliably and rapidly from the low-resolution maps that are typical of structures determined with the use of single-particle electron microscopy.  相似文献   
134.
We have previously reported the development of AutoEM, a software package for semi-automated acquisition of data from a transmission electron microscope. In continuing efforts to improve the speed of structure determination of macromolecular assemblies by electron microscopy, we report here on the performance of a new generation of 4 K CCD cameras for use in cryo electron microscopic applications. We demonstrate that at 120 kV, and at a nominal magnification of 67000 x, power spectra and signal-to-noise ratios for the new 4 K CCD camera are comparable to values obtained for film images scanned using a Zeiss scanner to resolutions as high as approximately 1/6.5A(-1). The specimen area imaged for each exposure on the 4 K CCD is about one-third of the area that can be recorded with a similar exposure on film. The CCD camera also serves the purpose of recording images at low magnification from the center of the hole to measure the thickness of vitrified ice in the hole. The performance of the camera is satisfactory under the low-dose conditions used in cryo electron microscopy, as demonstrated here by the determination of a three-dimensional map at 15 A for the catalytic core of the 1.8 MDa Bacillus stearothermophilus icosahedral pyruvate dehydrogenase complex, and its comparison with the previously reported atomic model for this complex obtained by X-ray crystallography.  相似文献   
135.
The binding of recombinant nematode anticoagulant protein c2 (NAPc2) to either factor X or Xa is a requisite step in the pathway for the potent inhibition of VIIa tissue factor. We have used NAPc2 as a tight binding probe of human Xa to investigate protein substrate recognition by the human prothrombinase complex. NAPc2 binds with high affinity (K(d) approximately 1 nm) to both X and Xa in a way that does not require or occlude the active site of the enzyme. In contrast, NAPc2 is a tight binding, competitive inhibitor of protein substrate cleavage by human Xa incorporated into prothrombinase with saturating concentrations of membranes and Va. By fluorescence binding studies we show that NAPc2 does not interfere with the assembly of human prothrombinase. These are properties expected of an inhibitor that blocks protein substrate recognition by targeting extended macromolecular recognition sites (exosites) on the enzyme complex. A weaker interaction (K(d) = 260-500 nm) observed between NAPc2 and bovine X was restored to a high affinity one in a recombinant chimeric bovine X derivative containing 25 residues from the COOH terminus of the proteinase domain of human X. This region implicated in binding NAPc2 is spatially adjacent to a site previously identified as a potential exosite. Despite the weaker interaction with bovine Xa, NAPc2 was a tight binding competitive inhibitor of protein substrate cleavage by bovine prothrombinase as well. Extended enzymic surfaces elucidated with exosite-directed probes, such as NAPc2, may define a unique region of factor Xa that is modulated following its assembly into prothrombinase and in turn determines the binding specificity of the enzyme complex for its protein substrate.  相似文献   
136.
Cancer cachexia is a wasting syndrome characterised by the loss of fat and/or muscle mass in advanced cancer patients. It has been well-established that cancer cells themselves can induce cachexia via the release of several pro-cachectic and pro-inflammatory factors. However, it is unclear how this process is regulated and the key cachexins that are involved. In this study, we validated C26 and EL4 as cachexic and non-cachexic cell models, respectively. Treatment of adipocytes and myotubes with C26 conditioned medium induced lipolysis and atrophy, respectively. We profiled soluble secreted proteins (secretome) as well as small extracellular vesicles (sEVs) released from cachexia-inducing (C26) and non-inducing (EL4) cancer cells by label-free quantitative proteomics. A total of 1268 and 1022 proteins were identified in the secretome of C26 and EL4, respectively. Furthermore, proteomic analysis of sEVs derived from C26 and EL4 cancer cells revealed a distinct difference in the protein cargo. Functional enrichment analysis using FunRich highlighted the enrichment of proteins that are implicated in biological processes such as muscle atrophy, lipolysis, and inflammation in both the secretome and sEVs derived from C26 cancer cells. Overall, our characterisation of the proteomic profiles of the secretory factors and sEVs from cachexia-inducing and non-inducing cancer cells provides insights into tumour factors that promote weight loss by mediating protein and lipid loss in various organs and tissues. Further investigation of these proteins may assist in highlighting potential therapeutic targets and biomarkers of cancer cachexia.  相似文献   
137.
138.
139.
The number of variants that have a non-zero effect on a trait (i.e. polygenicity) is a fundamental parameter in the study of the genetic architecture of a complex trait. Although many previous studies have investigated polygenicity at a genome-wide scale, a detailed understanding of how polygenicity varies across genomic regions is currently lacking. In this work, we propose an accurate and scalable statistical framework to estimate regional polygenicity for a complex trait. We show that our approach yields approximately unbiased estimates of regional polygenicity in simulations across a wide-range of various genetic architectures. We then partition the polygenicity of anthropometric and blood pressure traits across 6-Mb genomic regions (N = 290K, UK Biobank) and observe that all analyzed traits are highly polygenic: over one-third of regions harbor at least one causal variant for each of the traits analyzed. Additionally, we observe wide variation in regional polygenicity: on average across all traits, 48.9% of regions contain at least 5 causal SNPs, 5.44% of regions contain at least 50 causal SNPs. Finally, we find that heritability is proportional to polygenicity at the regional level, which is consistent with the hypothesis that heritability enrichments are largely driven by the variation in the number of causal SNPs.  相似文献   
140.
The human AAA+ ATPase p97, also known as valosin-containing protein, a potential target for cancer therapeutics, plays a vital role in the clearing of misfolded proteins. p97 dysfunction is also known to play a crucial role in several neurodegenerative disorders, such as MultiSystem Proteinopathy 1 (MSP-1) and Familial Amyotrophic Lateral Sclerosis (ALS). However, the structural basis of its role in such diseases remains elusive. Here, we present cryo-EM structural analyses of four disease mutants p97R155H, p97R191Q, p97A232E, p97D592N, as well as p97E470D, implicated in resistance to the drug CB-5083, a potent p97 inhibitor. Our cryo-EM structures demonstrate that these mutations affect nucleotide-driven allosteric activation across the three principal p97 domains (N, D1, and D2) by predominantly interfering with either (1) the coupling between the D1 and N-terminal domains (p97R155H and p97R191Q), (2) the interprotomer interactions (p97A232E), or (3) the coupling between D1 and D2 nucleotide domains (p97D592N, p97E470D). We also show that binding of the competitive inhibitor, CB-5083, to the D2 domain prevents conformational changes similar to those seen for mutations that affect coupling between the D1 and D2 domains. Our studies enable tracing of the path of allosteric activation across p97 and establish a common mechanistic link between active site inhibition and defects in allosteric activation by disease-causing mutations and have potential implications for the design of novel allosteric compounds that can modulate p97 function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号