首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   512篇
  免费   28篇
  2023年   3篇
  2022年   11篇
  2021年   17篇
  2020年   5篇
  2019年   9篇
  2018年   13篇
  2017年   10篇
  2016年   9篇
  2015年   29篇
  2014年   30篇
  2013年   45篇
  2012年   53篇
  2011年   44篇
  2010年   27篇
  2009年   18篇
  2008年   32篇
  2007年   32篇
  2006年   21篇
  2005年   20篇
  2004年   26篇
  2003年   21篇
  2002年   13篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有540条查询结果,搜索用时 375 毫秒
31.
Identifying structural determinants of human immunodeficiency virus (HIV) neutralization is an important component of rational drug and vaccine design. We used cryoelectron tomography and atomic force microscopy to characterize the structure of an extremely potent HIV-neutralizing protein, D1D2-Ig alpha tp (abbreviated as D1D2-IgP), a polyvalent antibody construct that presents dodecameric CD4 in place of the Fab regions. We show that D1D2-IgP has a novel structure, displaying greater flexibility of its antibody arms than the closely related IgM. Using simian immunodeficiency virus in complex with D1D2-IgP, we present unequivocal evidence that D1D2-IgP can cross-link surface spikes on the same virus and on neighboring viruses. The observed binding to the viral envelope spikes is the result of specific CD4-gp120 interaction, because binding was not observed with MICA-IgP, a construct that is identical to D1D2-IgP except that major histocompatibility complex Class I-related Chain A (MICA) replaces the CD4 moiety. CD4-mediated binding was also associated with a significantly elevated proportion of ruptured viruses. The ratio of inactivated to CD4-liganded gp120-gp41 spikes can be much greater than 1:1, because all gp120-gp41 spikes on the closely apposed surfaces of cross-linked viruses should be incapable of accessing the target cell surface and mediating entry, as a result of inter-virus spike cross-linking. These results implicate flexibility rather than steric bulk or polyvalence per se as a structural explanation for the extreme potency of D1D2-IgP and thus suggest polyvalence presented on a flexible scaffold as a key design criterion for small molecule HIV entry inhibitors.  相似文献   
32.
Understanding the molecular architectures of enveloped and complex viruses is a challenging frontier in structural biology. In these viruses, the structural and compositional variation from one viral particle to another generally precludes the use of either crystallization or image averaging procedures that have been successfully implemented in the past for highly symmetric viruses. While advances in cryo electron tomography of unstained specimens provide new opportunities for identification and molecular averaging of individual subcomponents such as the surface glycoprotein spikes on purified viruses, electron tomography of stained and plunge-frozen cells is being used to visualize the cellular context of viral entry and replication. Here, we review recent developments in both areas as they relate to our understanding of the biology of heterogeneous and pleiomorphic viruses.  相似文献   
33.
We report the development of a novel, multi-specimen imaging system for high-throughput transmission electron microscopy. Our cartridge-based loading system, called the "Gatling", permits the sequential examination of as many as 100 specimens in the microscope for room temperature electron microscopy using mechanisms for rapid and automated specimen exchange. The software for the operation of the Gatling and automated data acquisition has been implemented in an updated version of our in-house program AutoEM. In the current implementation of the system, the time required to deliver 95 specimens into the microscope and collect overview images from each is about 13 h. Regions of interest are identified from a low magnification atlas generation from each specimen and an unlimited number of higher magnifications images can be subsequently acquired from these regions using fully automated data acquisition procedures that can be controlled from a remote interface. We anticipate that the availability of the Gatling will greatly accelerate the speed of data acquisition for a variety of applications in biology, materials science, and nanotechnology that require rapid screening and image analysis of multiple specimens.  相似文献   
34.
Urinary catheterization is a routine procedure in an intensive care unit (ICU) for monitoring the urine output of critically ill patients. The catheters which are most often used to help with urinary incontinence and retention also face problems like blockage, leakage and infection. These problems are due to proteins that adhere to the catheter surface and quickly build up on each other forming a protein layer. As the layers build up they can crystallize, providing the major source of blockage and leakage. Current strategies to avoid these problems include coating a catheter with silver alloy to reduce bacteria on the catheter surface. However, silver alloy coatings can lead to increased silver resistance for bacteria. Since silver is already used as an antibacterial agent in many places in a hospital, it is even more possible that resistance can develop. An alternative solution is presented involving coating latex, a common urinary catheter material with a micro layer (5-100 microns) of polyethylene glycol. This hydrogel is applied using an interfacial photopolymerization process with ethyl eosin as the photoinitiator. A 25 ppm concentration of ethyl eosin provided the strongest gel to surface adhesion and significantly lowered protein adhesion when compared to an uncoated latex substrate.  相似文献   
35.
All organisms possess fundamental metabolic pathways to ensure that needed carbon and sulfur compounds are provided to the cell in the proper chemical form and oxidation state. For most organisms capable of using CO2 as sole source of carbon, ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) catalyzes primary carbon dioxide assimilation. In addition, sulfur salvage pathways are necessary to ensure that key sulfur-containing compounds are both available and, where necessary, detoxified in the cell. Using knock-out mutations and metabolomics in the bacterium Rhodospirillum rubrum, we show here that Rubisco concurrently catalyzes key and essential reactions for seemingly unrelated but physiologically essential central carbon and sulfur salvage metabolic pathways of the cell. In this study, complementation and mutagenesis studies indicated that representatives of all known extant functional Rubisco forms found in nature are capable of simultaneously catalyzing reactions required for both CO2-dependent growth as well as growth using 5-methylthioadenosine as sole sulfur source under anaerobic photosynthetic conditions. Moreover, specific inactivation of the CO2 fixation reaction did not affect the ability of Rubisco to support anaerobic 5-methylthioadenosine metabolism, suggesting that the active site of Rubisco has evolved to ensure that this enzyme maintains both key functions. Thus, despite the coevolution of both functions, the active site of this protein may be differentially modified to affect only one of its key functions.  相似文献   
36.
A series of galactose-derived aryl enones were synthesised and screened against Mycobacterium tuberculosis H37Rv. Preliminary results were promising with MIC values in the range 1.56-12.5 μg/mL.  相似文献   
37.

Background

The major connective tissues of the knee joint act in concert during locomotion to provide joint stability, smooth articulation, shock absorption, and distribution of mechanical stresses. These functions are largely conferred by the intrinsic material properties of the tissues, which are in turn determined by biochemical composition. A thorough understanding of the structure-function relationships of the connective tissues of the knee joint is needed to provide design parameters for efforts in tissue engineering.

Methodology/Principal Findings

The objective of this study was to perform a comprehensive characterization of the tensile properties, collagen content, and pyridinoline crosslink abundance of condylar cartilage, patellar cartilage, medial and lateral menisci, cranial and caudal cruciate ligaments (analogous to anterior and posterior cruciate ligaments in humans, respectively), medial and lateral collateral ligaments, and patellar ligament from immature bovine calves. Tensile stiffness and strength were greatest in the menisci and patellar ligament, and lowest in the hyaline cartilages and cruciate ligaments; these tensile results reflected trends in collagen content. Pyridinoline crosslinks were found in every tissue despite the relative immaturity of the joints, and significant differences were observed among tissues. Notably, for the cruciate ligaments and patellar ligament, crosslink density appeared more important in determining tensile stiffness than collagen content.

Conclusions/Significance

To our knowledge, this study is the first to examine tensile properties, collagen content, and pyridinoline crosslink abundance in a direct head-to-head comparison among all of the major connective tissues of the knee. This is also the first study to report results for pyridinoline crosslink density that suggest its preferential role over collagen in determining tensile stiffness for certain tissues.  相似文献   
38.
On the basis of pharmacophoric modelling studies of existing NNRTIs, a series of isatin beta-thiosemicarbazone derivatives was synthesized and evaluated for their anti-HIV activity in HTLV-III(B) strain in the CEM cell line. Three compounds showed significant anti-HIV activity, whereupon compound 6 was found to be the most active compound with an EC(50) value of 2.62 microM and a selectivity index of 17.41, while not being cytotoxic to the cell line at a CC(50) value of 44.90 microM. Other tested compounds exhibited marked activity below their toxicity threshold.  相似文献   
39.
Ribosome inactivating proteins and apoptosis   总被引:10,自引:0,他引:10  
Ribosome inactivating proteins (RIPs) are protein toxins that are of plant or microbial origin that inhibit protein synthesis by inactivating ribosomes. Recent studies suggest that RIPs are also capable of inducing cell death by apoptosis. Though many reports are available on cell death induced by RIPs, the mechanism involved is not well studied. Comparison of pathways of apoptosis and cellular events induced by various RIPs suggests a central role played by mitochondria, probably acting as an integrator of cellular stress and cell death. The purpose of this review is to compare the various apoptotic pathways that may be involved and propose a general pathway in RIP-induced cell death.  相似文献   
40.
Single-gene disorders with "simple" Mendelian inheritance do not always imply that there will be an easy prediction of the phenotype from the genotype, which has been shown for a number of metabolic disorders. We propose that moonlighting enzymes (i.e., metabolic enzymes with additional functional activities) could contribute to the complexity of such disorders. The lack of knowledge about the additional functional activities of proteins could result in a lack of correlation between genotype and phenotype. In this review, we highlight some notable and recent examples of moonlighting enzymes and their possible contributions to human disease. Because knowledge and cataloging of the moonlighting activities of proteins are essential for the study of cellular function and human physiology, we also review recently reported and recommended methods for the discovery of moonlighting activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号