首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2045篇
  免费   162篇
  国内免费   1篇
  2023年   10篇
  2022年   14篇
  2021年   44篇
  2020年   27篇
  2019年   30篇
  2018年   37篇
  2017年   32篇
  2016年   41篇
  2015年   74篇
  2014年   101篇
  2013年   107篇
  2012年   157篇
  2011年   140篇
  2010年   74篇
  2009年   79篇
  2008年   116篇
  2007年   129篇
  2006年   105篇
  2005年   92篇
  2004年   74篇
  2003年   54篇
  2002年   56篇
  2001年   43篇
  2000年   49篇
  1999年   38篇
  1998年   18篇
  1997年   13篇
  1996年   14篇
  1995年   19篇
  1994年   14篇
  1993年   15篇
  1992年   47篇
  1991年   26篇
  1990年   21篇
  1989年   30篇
  1988年   20篇
  1987年   20篇
  1986年   15篇
  1985年   16篇
  1984年   15篇
  1983年   15篇
  1980年   11篇
  1979年   17篇
  1977年   13篇
  1976年   11篇
  1975年   12篇
  1972年   9篇
  1971年   10篇
  1969年   10篇
  1968年   8篇
排序方式: 共有2208条查询结果,搜索用时 31 毫秒
91.
In this study, we conducted an epigenome-wide association study of metabolic syndrome (MetS) among 846 participants of European descent in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN). DNA was isolated from CD4+ T cells and methylation at ~470,000 cytosine-phosphate-guanine dinucleotide (CpG) pairs was assayed using the Illumina Infinium HumanMethylation450 BeadChip. We modeled the percentage methylation at individual CpGs as a function of MetS using linear mixed models. A Bonferroni-corrected P-value of 1.1 x 10−7 was considered significant. Methylation at two CpG sites in CPT1A on chromosome 11 was significantly associated with MetS (P for cg00574958 = 2.6x10-14 and P for cg17058475 = 1.2x10-9). Significant associations were replicated in both European and African ancestry participants of the Bogalusa Heart Study. Our findings suggest that methylation in CPT1A is a promising epigenetic marker for MetS risk which could become useful as a treatment target in the future.  相似文献   
92.
Solid tumors are characterized by a plethora of epigenetic changes. In particular, patterns methylation of cytosines at the 5-position (5mC) in the context of CpGs are frequently altered in tumors. Recent evidence suggests that 5mC can get converted to 5-hydroxylmethylcytosine (5hmC) in an enzymatic process involving ten eleven translocation (TET) protein family members, and this process appears to be important in facilitating plasticity of cytosine methylation. Here we evaluated the global levels of 5hmC using a validated immunohistochemical staining method in a large series of clear cell renal cell carcinoma (n = 111), urothelial cell carcinoma (n = 55) and testicular germ cell tumors (n = 84) and matched adjacent benign tissues. Whereas tumor-adjacent benign tissues were mostly characterized by high levels of 5hmC, renal cell carcinoma and urothelial cell carcinoma showed dramatically reduced staining for 5hmC. 5hmC levels were low in both primary tumors and metastases of clear cell renal cell carcinoma and showed no association with disease outcomes. In normal testis, robust 5hmC staining was only observed in stroma and Sertoli cells. Seminoma showed greatly reduced 5hmC immunolabeling, whereas differentiated teratoma, embryonal and yolk sack tumors exhibited high 5hmC levels. The substantial tumor specific loss of 5hmC, particularly in clear cell renal cell carcinoma and urothelial cell carcinoma, suggests that alterations in pathways involved in establishing and maintaining 5hmC levels might be very common in cancer and could potentially be exploited for diagnosis and treatment.  相似文献   
93.
A comprehensive analysis of the quaternary features of distantly related homo‐oligomeric proteins is the focus of the current study. This study has been performed at the levels of quaternary state, symmetry, and quaternary structure. Quaternary state and quaternary structure refers to the number of subunits and spatial arrangements of subunits, respectively. Using a large dataset of available 3D structures of biologically relevant assemblies, we show that only 53% of the distantly related homo‐oligomeric proteins have the same quaternary state. Considering these homologous homo‐oligomers with the same quaternary state, conservation of quaternary structures is observed only in 38% of the pairs. In 36% of the pairs of distantly related homo‐oligomers with different quaternary states the larger assembly in a pair shows high structural similarity with the entire quaternary structure of the related protein with lower quaternary state and it is referred as “Russian doll effect.” The differences in quaternary state and structure have been suggested to contribute to the functional diversity. Detailed investigations show that even though the gross functions of many distantly related homo‐oligomers are the same, finer level differences in molecular functions are manifested by differences in quaternary states and structures. Comparison of structures of biological assemblies in distantly and closely related homo‐oligomeric proteins throughout the study differentiates the effects of sequence divergence on the quaternary structures and function. Knowledge inferred from this study can provide insights for improved protein structure classification and function prediction of homo‐oligomers. Proteins 2016; 84:1190–1202. © 2016 Wiley Periodicals, Inc.  相似文献   
94.
95.
96.
97.
Although many typical outer-membrane proteins (OMPs) have been well characterized, the biological functions of many OMPs remain largely elusive. In this study, we successfully constructed 29 OMP knockout strains in the pathogen Aeromonas hydrophila, which account for about 50% of all predicted OMPs in this bacterial species. We then further validated the antibiotics' susceptibility characteristics against 20 antimicrobial reagents in these mutants considering several phenotypes. Our results showed that a total of 22 OMP mutants affected the susceptibility to at least one antibiotic. The deletion of some OMPs, such as ΔlamB and ΔbamA, revealed very important roles in the resistance to certain antibiotics. However, not a single OMP mutant presented a constant behaviour to all of the tested antibiotics, suggesting the existence of a complex intercellular regulation mechanism and a protein–protein interaction network underlying the OMP homeostasis in the presence of antibiotics. Meanwhile, some OMP mutants also affected biofilm formation, ECPase and haemolytic activity, and carbon resources utilization. This report demonstrates the biological functions of OMPs on a large scale and most of results have not been reported in A. hydrophila.  相似文献   
98.
Hemextin AB complex from the venom of Hemachatus haemachatus is the first known natural anticoagulant that specifically inhibits the enzymatic activity of blood coagulation factor VIIa in the absence of factor Xa. It is also the only known heterotetrameric complex of two three-finger toxins. Individually only hemextin A has mild anticoagulant activity, whereas hemextin B is inactive. However, hemextin B synergistically enhances the anticoagulant activity of hemextin A and their complex exhibits potent anticoagulant activity. In this study we characterized the nature of molecular interactions leading to the complex formation. Circular dichroism studies indicate the stabilization of β-sheet in the complex. Hemextin AB complex has an increased apparent molecular diameter in both gas and liquid phase techniques. The complex formation is enthalpically favorable and entropically unfavorable with a negative change in the heat capacity. Thus, the anticoagulant complex shows less structural flexibility than individual subunits. Both electrostatic and hydrophobic interactions are important for the complexation; the former driving the process and the latter helping in the stabilization of the tetramer. The tetramer dissociates into dimers and monomers with the increase in the ionic strength of the solution and also with increase in the glycerol concentration in the buffer. The two dimers formed under each of these conditions display distinct differences in their apparent molecular diameters and anticoagulant properties. Based on these results, we have proposed a model for this unique anticoagulant complex.  相似文献   
99.
Keratin 8 (K8) and keratin-18 (K18) are the major intermediate filament proteins in the intestinal epithelia. The regulation and function of keratin in the intestinal epithelia is largely unknown. In this study we addressed the role and regulation of K8 and K18 expression by interleukin 6 (IL-6). Caco2-BBE cell line and IL-6 null mice were used to study the effect of IL-6 on keratin expression. Keratin expression was studied by Northern blot, Western blot, and confocal microscopy. Paracellular permeability was assessed by apical-to-basal transport of a fluorescein isothiocyanate dextran probe (FD-4). K8 was silenced using the small interfering RNA approach. IL-6 significantly up-regulated mRNA and protein levels of K8 and K18. Confocal microscopy showed a reticular pattern of intracellular keratin localized to the subapical region after IL-6 treatment. IL-6 also induced serine phosphorylation of K8. IL-6 decreased paracellular flux of FD-4 compared with vehicle-treated monolayers. K8 silencing abolished the decrease in paracellular permeability induced by IL-6. Administration of dextran sodium sulfate (DSS) significantly increased intestinal permeability in IL-6-/- mice compared with wild type mice given DSS. Collectively, our data demonstrate that IL-6 regulates the colonic expression of K8 and K18, and K8/K18 mediates barrier protection by IL-6 under conditions where intestinal barrier is compromised. Thus, our data uncover a novel function of these abundant cytoskeletal proteins, which may have implications in intestinal disorders such as inflammatory bowel disease wherein barrier dysfunction underlies the inflammatory response.  相似文献   
100.
Srinivasan R  Li J  Ng SL  Kalesh KA  Yao SQ 《Nature protocols》2007,2(11):2655-2664
This protocol describes the step-by-step procedures for the efficient assembly of bidentate inhibitor libraries of a target enzyme, using the so-called 'click chemistry' between an alkyne-bearing core group and an azide-modified peripheral group, followed by direct biological screening for the identification of potential 'hits'. The reaction is highlighted by its modularity, high efficiency (approximately 100% yield in most cases) and tolerance toward many functional groups present in the fragments, as well as biocompatibility (typically carried out in aqueous conditions with small amounts of biocompatible catalysts). The approach consists of three steps: (i) chemical synthesis of alkyne-bearing protein tyrosine phosphatase or matrix metalloprotease core groups and diverse azide-modified peripheral groups; (ii) click chemistry to assemble the bidentate inhibitor libraries; and (iii) direct screening of the libraries with target enzymes using 384-well microplate assays. Following the chemical synthesis of the core and peripheral groups and optimization of the click chemistry conditions (approximately 1 week), steps (ii) and (iii) take 3 d to complete (approximately 1-2 d for library assembly and 1 d for inhibitor screening).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号