首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   20篇
  国内免费   3篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   9篇
  2020年   4篇
  2019年   6篇
  2018年   12篇
  2017年   6篇
  2016年   3篇
  2015年   12篇
  2014年   24篇
  2013年   24篇
  2012年   25篇
  2011年   27篇
  2010年   17篇
  2009年   19篇
  2008年   23篇
  2007年   37篇
  2006年   26篇
  2005年   16篇
  2004年   20篇
  2003年   18篇
  2002年   15篇
  2001年   5篇
  2000年   7篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1984年   5篇
  1983年   2篇
  1982年   1篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1971年   1篇
  1968年   2篇
排序方式: 共有414条查询结果,搜索用时 15 毫秒
31.
Down syndrome (DS) is the most prevalent chromosomal disorder, accounting for significant morbidity and mortality. Definitive diagnosis requires invasive amniocentesis, and current maternal serum-based testing requires a false-positive rate of about 5% to detect 85% of affected pregnancies. We have performed a comprehensive proteomic analysis to identify potential serum biomarkers to detect DS. First- and second-trimester maternal serum samples of DS and gestational age-matched controls were analyzed using multiple, complementary proteomic approaches, including fluorescence 2-dimensional gel electrophoresis (2D-DIGE), 2-dimensional liquid chromatography-chromatofocusing (2D-CF), multidimensional protein identification technology (MudPIT; LC/LC-MS/MS), and MALDI-TOF-MS peptide profiling. In total, 28 and 26 proteins were differentially present in first- and second-trimester samples, respectively. Of these, 19 were specific for the first trimester and 16 for the second trimester, and 10 were differentially present in both trimesters. Analysis of MALDI-TOF-MS peptide profiles with pattern-recognition software also discriminated between DS and controls in both trimesters, with an average recognition capability approaching 96%. A majority of the biomarkers identified are serum glycoproteins that may play a role in cellular differentiation and growth of fetus. Further characterization and quantification of these markers in a larger cohort of subjects may provide the basis for new tests for improved DS screening.  相似文献   
32.
We previously reported that i) a Western diet increased levels of unsaturated lysophosphatidic acid (LPA) in small intestine and plasma of LDL receptor null (LDLR−/−) mice, and ii) supplementing standard mouse chow with unsaturated (but not saturated) LPA produced dyslipidemia and inflammation. Here we report that supplementing chow with unsaturated (but not saturated) LPA resulted in aortic atherosclerosis, which was ameliorated by adding transgenic 6F tomatoes. Supplementing chow with lysophosphatidylcholine (LysoPC) 18:1 (but not LysoPC 18:0) resulted in dyslipidemia similar to that seen on adding LPA 18:1 to chow. PF8380 (a specific inhibitor of autotaxin) significantly ameliorated the LysoPC 18:1-induced dyslipidemia. Supplementing chow with LysoPC 18:1 dramatically increased the levels of unsaturated LPA species in small intestine, liver, and plasma, and the increase was significantly ameliorated by PF8380 indicating that the conversion of LysoPC 18:1 to LPA 18:1 was autotaxin dependent. Adding LysoPC 18:0 to chow increased levels of LPA 18:0 in small intestine, liver, and plasma but was not altered by PF8380 indicating that conversion of LysoPC 18:0 to LPA 18:0 was autotaxin independent. We conclude that i) intestinally derived unsaturated (but not saturated) LPA can cause atherosclerosis in LDLR−/− mice, and ii) autotaxin mediates the conversion of unsaturated (but not saturated) LysoPC to LPA.  相似文献   
33.
Indole and its derivatives undergo smooth conjugate addition onto en-1,4-dione derived from isatin and acetophenone, in the presence of a catalytic amount of molecular iodine in acetonitrile under mild conditions to afford a novel class of 3-(1-(1H-indol-3-yl)-2-oxo-2-phenylethyl)indolin-2-one derivatives in good yields with high degree of 1,4-selectivity. Some of these compounds are found to exhibit modest antibacterial and antifungal properties.  相似文献   
34.
35.
Rapid identification of mosquito (vector) species is critical for vector control and disease management. Pictorial keys of mosquito species are currently used for the identification of new mosquito species. However, this approach is not very effective. Here, we describe the use of an ID3 algorithm (part of artificial intelligence) for the rapid identification of the South East Asian female Culex mosquito species.

Availability  相似文献   

36.
37.
Palladium catalyzed transfer hydrogenolysis of protected peptides using a recyclable polymer-supported formate as hydrogen donor affords pure hydrogenolyzed products without the need for any chromatographic purification steps and provides a facile method for the clean and efficient removal of some of the commonly used protecting groups in peptide synthesis.  相似文献   
38.
Our recent studies have shown that extracellular-regulated protein kinase (ERK) promotes cell death in cerebellar granule neurons (CGN) cultured in low potassium. Here we report that the "death" phenotypes of CGN after potassium withdrawal are heterogeneous, allowing the distinction between plasma membrane (PM)-, DNA-, and PM/DNA-damaged populations. These damaged neurons display nuclear condensation that precedes PM or DNA damage. Inhibition of ERK activation either by U0126 or by dominant-negative mitogen-activated protein kinase/ERK kinase (MEK) overexpression results in a dramatic reduction of PM damaged neurons and nuclear condensation. In contrast, overexpression of constitutively active MEK potentiates PM damage and nuclear condensation. ERK-promoted cellular damage is independent of caspase-3. Persistent active ERK translocates to the nucleus, whereas caspase-3 remains in the cytoplasm. Antioxidants that reduced ERK activation and PM damage showed no effect on caspase-3 activation or DNA damage. These data identify ERK as an important executor of neuronal damage involving a caspase-3-independent mechanism.  相似文献   
39.
We have developed a software program that weights and integrates specific properties on the genes in a pathogen so that they may be ranked as drug targets. We applied this software to produce three prioritized drug target lists for Mycobacterium tuberculosis, the causative agent of tuberculosis, a disease for which a new drug is desperately needed. Each list is based on an individual criterion. The first list prioritizes metabolic drug targets by the uniqueness of their roles in the M. tuberculosis metabolome ("metabolic chokepoints") and their similarity to known "druggable" protein classes (i.e., classes whose activity has previously been shown to be modulated by binding a small molecule). The second list prioritizes targets that would specifically impair M. tuberculosis, by weighting heavily those that are closely conserved within the Actinobacteria class but lack close homology to the host and gut flora. M. tuberculosis can survive asymptomatically in its host for many years by adapting to a dormant state referred to as "persistence." The final list aims to prioritize potential targets involved in maintaining persistence in M. tuberculosis. The rankings of current, candidate, and proposed drug targets are highlighted with respect to these lists. Some features were found to be more accurate than others in prioritizing studied targets. It can also be shown that targets can be prioritized by using evolutionary programming to optimize the weights of each desired property. We demonstrate this approach in prioritizing persistence targets.  相似文献   
40.
Aspartate kinase (AK) and homoserine dehydrogenase (HSD) function as key regulatory enzymes at branch points in the aspartate amino acid pathway and are feedback-inhibited by threonine. In plants the biochemical features of AK and bifunctional AK-HSD enzymes have been characterized, but the molecular properties of the monofunctional HSD remain unexamined. To investigate the role of HSD, we have cloned the cDNA and gene encoding the monofunctional HSD (GmHSD) from soybean. Using heterologously expressed and purified GmHSD, initial velocity and product inhibition studies support an ordered bi bi kinetic mechanism in which nicotinamide cofactor binds first and leaves last in the reaction sequence. Threonine inhibition of GmHSD occurs at concentrations (Ki = 160–240 mm) more than 1000-fold above physiological levels. This is in contrast to the two AK-HSD isoforms in soybean that are sensitive to threonine inhibition (Ki∼150 μm). In addition, GmHSD is not inhibited by other aspartate-derived amino acids. The ratio of threonine-resistant to threonine-sensitive HSD activity in soybean tissues varies and likely reflects different demands for amino acid biosynthesis. This is the first cloning and detailed biochemical characterization of a monofunctional feedback-insensitive HSD from any plant. Threonine-resistant HSD offers a useful biotechnology tool for manipulating the aspartate amino acid pathway to increase threonine and methionine production in plants for improved nutritional content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号