首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1090篇
  免费   70篇
  国内免费   3篇
  2024年   3篇
  2023年   6篇
  2022年   15篇
  2021年   26篇
  2020年   9篇
  2019年   16篇
  2018年   33篇
  2017年   21篇
  2016年   33篇
  2015年   44篇
  2014年   53篇
  2013年   85篇
  2012年   87篇
  2011年   101篇
  2010年   42篇
  2009年   49篇
  2008年   71篇
  2007年   55篇
  2006年   60篇
  2005年   66篇
  2004年   58篇
  2003年   50篇
  2002年   32篇
  2001年   17篇
  2000年   19篇
  1999年   14篇
  1998年   9篇
  1997年   8篇
  1996年   4篇
  1995年   6篇
  1994年   2篇
  1993年   7篇
  1992年   5篇
  1991年   13篇
  1990年   4篇
  1989年   11篇
  1988年   1篇
  1987年   6篇
  1986年   4篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1163条查询结果,搜索用时 15 毫秒
991.
Corynebacterium glutamicum forms inorganic polyphosphate (poly P) that may occur as soluble (cytosolic) poly P and/or as volutin granules. A suitable method for monitoring soluble and granular poly P in C. glutamicum was developed and applied to C. glutamicum cells cultivated under different growth conditions. Under phosphate-limiting conditions, C. glutamicum did not accumulate poly P, but it rebuilt its poly P storages when phosphate became available. The poly P content of C. glutamicum growing on glucose minimal medium with sufficient phosphate varied considerably during growth. While the poly P content was minimal in the midexponential growth phase, two maxima were observed in the early exponential growth phase and at entry into the stationary growth phase. Cells in the early exponential growth phase primarily contained granular poly P, while cells entering the stationary growth phase contained soluble, cytosolic poly P. These results and those obtained for C. glutamicum cells cultivated under hypo- or hyperosmotic conditions or during glutamate production revealed that the poly P content of C. glutamicum and the partitioning between cytosolic and granular forms of poly P are dynamics and depend on the growth conditions.  相似文献   
992.
Glutamine may be a conditionally essential amino acid in low-birth-weight (LBW) preterm neonates. Exogenously administered amino acids, by providing anaplerotic carbon into the tricarboxylic acid cycle, could result in greater cataplerotic efflux and glutamine de novo synthesis. The effect of dose and duration of amino acid infusion on glutamine and nitrogen (N) kinetics was examined in LBW infants in the period immediately after birth. Preterm neonates (<32 weeks gestation, birth weights 809-1,755 g) were randomized to initially receive either 480 or 960 micromol x kg(-1) x h(-1) of an intravenous amino acid solution for 19-24 hours, followed by a higher or lower amino acid load for either 5 h or 24 h. Glutamine de novo synthesis, leucine N, phenylalanine, and urea kinetics were determined using stable isotopic tracers. An increase in amino acid infusion from 480 to 960 micromol x kg(-1) x h(-1) for 5 h resulted in decreased glutamine de novo synthesis in every neonate (384.4 +/- 38.0 to 368.9 +/- 38.2 micromol x kg(-1) x h(-1), P < 0.01) and a lower whole body rate of proteolysis (P < 0.001) and urea synthesis (P < 0.001). However, when the increased amino acid infusion was extended for 24 h, glutamine de novo synthesis increased (369.7 +/- 92.6 to 483.4 +/- 97.5 micromol x kg(-1) x h(-1), P < 0.001), whole body rate of proteolysis did not change, and urea production increased. Decreasing the amino acid load resulted in a decrease in glutamine rate of appearance (R(a)) and leucine N R(a), but had no effect on phenylalanine R(a). Acutely stressed LBW infants responded to an increase in amino acid load by transiently suppressing whole body rate of glutamine synthesis, proteolysis, and oxidation of protein. The mechanisms of this transient effect on whole body protein/nitrogen metabolism remain unknown.  相似文献   
993.
Friend murine spleen focus-forming virus (SFFV) encodes a glycoprotein designated gp52, which is responsible for the leukemogenic properties of the virus. gp52 lacks a cytoplasmic domain and is defective in its transport to the cell surface. We constructed a chimeric envelope gene which codes for a molecule with an external domain derived from the SFFV envelope gene and membrane-spanning and cytoplasmic domains derived from the Friend murine leukemia virus envelope gene. Like gp52, the chimeric protein was defective in its transport to the cell surface, indicating that the absence of a cytoplasmic tail is not responsible for the defective intracellular transport of SFFV gp52. However, unlike wild-type SFFV, the chimeric SFFV genome failed to induce erythroleukemia in adult mice. The results indicate that the altered membrane-spanning domain, lack of a detectable cytoplasmic tail in gp52, or both factors are prerequisites for the erythroleukemia-inducing properties of SFFV but are not responsible for the block in intracellular transport of the glycoprotein.  相似文献   
994.
The gp52 glycoprotein of the spleen focus-forming virus found in the Friend and Rauscher complexes of murine leukemia viruses (MuLV) has been previously identified as a recombinant molecule involving substitutions and deletions of the MuLV env gene. Unlike the MuLV structural glycoproteins, gp52 is defective in its transport to the cell surface. We have studied aspects of the intracellular transport and membrane association of gp52 to investigate the possible mechanisms underlying the defective transport process. It was found that a panel of monoclonal antibodies to different epitopes of p 15E, as well as an antiserum to a synthetic peptide corresponding to the carboxy terminus of MuLV envelope precursors, failed to react with gp52. Despite the possible absence of membrane-anchoring regions of MuLV envelope proteins known to reside on p 15E, gp52 was not found to be secreted into the culture fluids. Detergent extraction studies indicated that gp52 is associated with the membranes and not the contents of microsomal vesicles in speen focus-forming virus-infected cells. gp65, the processed form of gp52, could be labeled with [3H]palmitic acid, suggesting a membrane association. To determine whether a spontaneous denaturation occurs leading to aggregation and defective transport of gp52, we studied the surface expression of gp52 in cells grown at different temperatures, as well as the solubility of gp52 in low concentrations of Triton X-100. No evidence of aggregation or of a temperature-dependent difference in transport was obtained. gp52 appears to be a monotopic integral membrane protein, unlike MuLV envelope proteins which are bitopic integral membrane proteins; proteolytic digestion of intact microsomal vesicles did not reveal a detectable cytoplasmic tail under conditions where this could be demonstrated on MuLV envelope precursors. We suggest that a loss of putative signals involved in mediating intracellular transport is a likely cause for the defective transport of the spleen focus-forming virus glycoproteins.  相似文献   
995.
The transport of the gp70 glycoprotein to the cell surface and concomitant release of infectious virus was inhibited by treatment of Friend murine leukemia virus-infected Eveline cells with the sodium ionophore monensin. Virus yields were reduced more than 50-fold by 10(-5) M monensin, whereas particle production was reduced by 50% in monensin-treated cells. The resulting particles failed to incorporate newly synthesized gp70 and p15(E), whereas the other structural proteins, p30, p15, p12, and p10, were incorporated into virions. However, monensin did not inhibit the incorporation into virions of preformed gp70. A reduction in the efficiency of cleavage of the PrENV glycoprotein precursor and a defect in the processing of simple endo-H-sensitive to complex endo-H-resistant oligosaccharides suggest that intracellular transport of gp70 may be blocked before its entry into the Golgi apparatus. Fewer particles were found to bud from the cell surface, but intracellular vacuoles with budding virions were detected. Ferritin labeling and pulse-chase studies suggested a cell surface origin for these vacuoles. These experiments indicate that monensin inhibits the transport of Friend murine leukemia virus glycoproteins at an early stage, with a resultant block in the assembly and release of infectious virus.  相似文献   
996.
997.
Gene diversity and genetic structure of tribal populations of Andhra Pradesh, India, have been analyzed under a hierarchical model consisting of five regions of the state, tribes within the regions, and local subpopulations within the tribes. Average gene diversity has been estimated from gene frequency data for 15 polymorphic loci by using nested gene diversity analysis of GST. The intralocation coefficient of gene diversity was estimated at 96% of the total, whereas the intertribal, within—and between—regional gene diversities were found to be only 1.90, 0.95, and 1.43%, respectively. The estimate of gene diversity was higher for loci with higher degrees of polymorphism such as ABO, MN, ESD, and PTC and lower for loci with low-level polymorphism and extreme gene frequencies such as Hb, Tf, PHI, 6PGD, and Hp. The nature of selective preference or neutrality at the loci seems to be important in this respect. Tribes of the plains exhibit the least gene diversity, apparently because of higher gene flow among them. The contribution of loci with intermediate gene frequencies in intertribal and regional gene diversity was found to be higher than for loci with extreme allelic frequencies. These results suggest that the most significant component of variation is between individuals within locations and that variation between local subpopulations is negligible in the genetic structure of a population. Forces like selection, gene flow and drift also influence the diversity depending upon the nature of the locus. © 1993 Wiley-Liss, Inc.  相似文献   
998.
Insulin acts on its target tissues by specific interaction with the cell surface insulin receptor (IR). The IR possesses an intrinsic tyrosine kinase (TK) activity which is stimulated by insulin binding. This TK activity is required for many aspects of insulin signalling. We had earlier reported that human plasma α2-HS glycoprotein (α2-HSG) inhibits insulin-stimulated mitogenesis at the level of IR-TK (Mol Endo 7: 1445–1455, 1993). In the present study, using recombinant α2-HSG, which possesses 50–100 times the specific activity of plasma α2-HSG, we have further investigated the molecular basis of this effect. We examined the insulin-stimulated Ras signalling pathway in Chinese Hamster Ovary cells overexpressing the human IR, α2-HSG inhibits insulin-induced tyrosine phosphorylation of IRS-1 and the subsequent association of GRB2, as well as Sos, with IRS-1. This inhibition results in reduced guanine nucleotide exchange in p21ras. α2-HSG also inhibits the stimulation of Raf phosphorylation, in response to insulin, leading to inhibition of MEK activity. In a parallel pathway, α2-HSG also inhibits insulin-induced tyrosine phosphorylation of Shc. However, α2-HSG does not affect any of the metabolic actions of insulin tested in these cells. These results suggest that, while insulin's mitogenic effects can be abolished by inhibition of insulin-induced IR-TK, propagation of signals for metabolic activities might utilize alternate or rescue mechanisms.  相似文献   
999.
Enantioselective in vitro hydrolysis of methylphenidate (MPH) by the blood esterases of seven mammalian species is reported. The species included rats, rabbits, dogs, cattle, horses, monkeys, and humans. In vitro incubations up to 8 h were carried out in plasma, red blood cells, and whole blood of the various species. Enantioselective differences were evident among the different species on comparison of the data obtained from the three biological fluids. The esterases present in plasma appeared to show greater activity in the hydrolysis of MPH in all species where comparison with the other two biofluids was possible. Only in the case of humans did esterases present in plasma and red blood cells demonstrate opposite enantioselectivity in the hydrolysis of MPH. Thus after 8 h incubation, the RR-MPH/SS-MPH ratios in plasma and red blood cells were 0.31 and 1.16, respectively.  相似文献   
1000.
We have previously shown that dimethyl sulfoxide (DMSO) treatment of mouse embryo fibroblasts (MEF) at the early hours of mitogenic stimuli resulted in the inhibition of DNA and protein synthesis; delayed treatment of serum-stimulated cells with DMSO had little effect on the synthesis of these macromolecules. Here, we demonstrate the specific inhibition of expression of early growth response genes by DMSO in serum-stimulated MEF. The expression of interleukin 6, and of oncogenes c-myc and c-fos were inhibited when the cells were treated with 2% DMSO from the beginning of serum-stimulated growth but not after 3 h of mitogenic stimuli. Although the actin gene is an early serum-response gene, its expression was not affected by DMSO. The synthesis of another serum-induced protein, the plasminogen activator inhibitor-1 was blocked during concurrent and delayed (after 3 h of stimulation) treatment of serum-stimulated fibroblasts with DMSO. The expression of glyceraldehyde-3-phosphate dehydrogenase gene was not affected by DMSO. These results indicate that the expression of non-growth-related genes are either not affected or affected nonspecifically both at early and late stages of serum-induced growth of mouse embryo fibroblasts. The serum-induced expression of c-fos gene was abolished by DMSO treatment of MEF while the phorbol 12-myristate 13-acetate-induced expression of fos gene was not, indicating that the PMA signaling pathway was refractory to DMSO. Treatment of cells with medium containing 2% DMSO for 24-48 h prevents them from progression into cell cycle by preventing the expression of genes involved in G0-G1 transition of quiescent cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号