首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1511篇
  免费   88篇
  国内免费   2篇
  2024年   3篇
  2023年   13篇
  2022年   19篇
  2021年   48篇
  2020年   20篇
  2019年   24篇
  2018年   41篇
  2017年   47篇
  2016年   55篇
  2015年   68篇
  2014年   86篇
  2013年   121篇
  2012年   138篇
  2011年   143篇
  2010年   63篇
  2009年   67篇
  2008年   97篇
  2007年   75篇
  2006年   78篇
  2005年   75篇
  2004年   66篇
  2003年   59篇
  2002年   38篇
  2001年   16篇
  2000年   20篇
  1999年   17篇
  1998年   9篇
  1997年   10篇
  1996年   5篇
  1995年   8篇
  1994年   3篇
  1993年   8篇
  1992年   5篇
  1991年   13篇
  1990年   5篇
  1989年   10篇
  1988年   1篇
  1987年   6篇
  1986年   4篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1601条查询结果,搜索用时 15 毫秒
991.
Retinal cells which become ischemic will pass apoptotic signal to adjacent cells, resulting in the spread of damage. This occurs through open gap junctions. A class of novel drugs, based on primaquine (PQ), was tested for binding to connexin 43 using simulated docking studies. A novel drug has been synthesized and tested for inhibition of gap junction activity using R28 neuro-retinal cells in culture. Four drugs were initially compared to mefloquine, a known gap junction inhibitor. The drug with optimal inhibitory activity, PQ1, was tested for inhibition and was found to inhibit dye transfer by 70% at 10 μM. Retinal ischemia was produced in R28 cells using cobalt chloride as a chemical agent. This resulted in activation of caspase-3 which was prevented by PQ1, the gap junction inhibitor. Results demonstrate that novel gap junction inhibitors may provide a means to prevent retinal damage during ischemia.  相似文献   
992.
The beta-subunits of voltage-gated potassium (Kv) channels are members of the aldo-keto reductase (AKR) superfamily. These proteins regulate inactivation and membrane localization of Kv1 and Kv4 channels. The Kvbeta proteins bind to pyridine nucleotides with high affinity; however, their catalytic properties remain unclear. Here we report that recombinant rat Kvbeta2 catalyzes the reduction of a wide range of aldehydes and ketones. The rate of catalysis was slower (0.06-0.2 min(-1)) than those of most other AKRs but displayed the expected hyperbolic dependence on substrate concentration, with no evidence of allosteric cooperativity. Catalysis was prevented by site-directed substitution of Tyr-90 with phenylalanine, indicating that the acid-base catalytic residue, identified in other AKRs, has a conserved function in Kvbeta2. The protein catalyzed the reduction of a broad range of carbonyls, including aromatic carbonyls, electrophilic aldehydes and prostaglandins, phospholipids, and sugar aldehydes. Little or no activity was detected with carbonyl steroids. Initial velocity profiles were consistent with an ordered bi-bi rapid equilibrium mechanism in which NADPH binding precedes carbonyl binding. Significant primary kinetic isotope effects (2.0-3.1) were observed under single- and multiple-turnover conditions, indicating that the bond-breaking chemical step is rate-limiting. Structure-activity relationships with a series of para-substituted benzaldehydes indicated that the electronic interactions predominate during substrate binding and that no significant charge develops during the transition state. These data strengthen the view that Kvbeta proteins are catalytically active AKRs that impart redox sensitivity to Kv channels.  相似文献   
993.
994.
Deletions and rearrangements in the genome of Epstein-Barr virus (EBV) strain P3HR-1 generate subgenomic infectious particles that, unlike defective interfering particles in other viral systems, enhance rather than restrict EBV replication in vitro. Reports of comparable heterogeneous (het) DNA in EBV-linked human diseases, based on detection of an abnormal juxtaposition of EBV DNA fragments BamHI W and BamHI Z that disrupts viral latency, prompted us to determine at the nucleotide level all remaining recombination joints formed by the four constituent segments of P3HR-1-derived het DNA. Guided by endonuclease restriction maps, we chose PCR primer pairs that approximated and framed junctions creating the unique BamHI M/B1 and E/S fusion fragments. Sequencing of PCR products revealed points of recombination that lacked regions of extensive homology between constituent fragments. Identical recombination junctions were detected by PCR in EBV-positive salivary samples from human immunodeficiency virus-infected donors, although the W/Z rearrangement that induces EBV reactivation was frequently found in the absence of the other two. In vitro infection of lymphoid cells similarly indicated that not all three het DNA rearrangements need to reside on a composite molecule. These results connote a precision in the recombination process that dictates both composition and regulation of gene segments altered by genomic rearrangement. Moreover, the apparent frequency of het DNA at sites of EBV replication in vivo is consistent with a likely contribution to the pathogenesis of EBV reactivation.  相似文献   
995.
996.
The effects of methoxy-substitution at the 1-, 2-, 3-, and 4-positions of 9-aminomethyl-9,10-dihydroanthracene (AMDA) on h5-HT(2A) receptor affinity were determined. Racemic mixtures of these compounds were found to show the following affinity trend: 3-MeO > 4-MeO > 1-MeO approximately 2-MeO. Comparison of the effects of these substitutions, with the aid of computational molecular modeling techniques, suggest that the various positional and stereochemical isomers of the methoxy-substituted AMDA compounds interact differently with the h5-HT(2A) receptor. It is predicted that for the compounds with higher affinities, the methoxy oxygen atom is able to interact with hydrogen bond-donating sidechains within alternative h5-HT(2A) receptor binding sites, whereas the lower-affinity isomers lack this ability.  相似文献   
997.
An alkalophilic laccase from gamma-proteobacterium JB was applied to wheat straw-rich soda pulp to check its bleaching potential by using response surface methodology based on central composite design. The design was employed by selecting laccase units, ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) concentration and pH as model factors. The results of second order factorial design experiments showed that all three independent variables had significant effect on brightness and kappa number of laccase-treated pulp. Optimum conditions for biobleaching of pulp with laccase preparation (specific activity, 65 nkat mg(-1) protein) were 20 nkat g(-1) of pulp, 2mM ABTS and pH 8.0 which enhanced brightness by 5.89% and reduced kappa number by 21.1% within 4h of incubation at 55 degrees C, without further alkaline extraction of pulp. Tear index (8%) and burst index (18%) also improved for laccase-treated pulp as compared to control raw pulp. Treatment of chemically (CEH1H2) bleached pulp with laccase showed significant effect on release of chromophores, hydrophobic and reducing compounds. Laccase-prebleaching of raw pulp reduced the use of hypochlorite by 10% to achieve brightness of resultant hand sheets similar to the fully chemically bleached pulp.  相似文献   
998.
We have simulated two conformations of the fusion domain of influenza hemagglutinin (HA) within explicit water, salt, and heterogeneous lipid bilayers composed of POPC:POPG (4:1). Each conformation has seven different starting points in which the initial peptide structure is the same for each conformation, but the location across the membrane normal and lipid arrangement around the peptide are varied, giving a combined total simulation time of 140 ns. For the HA5 conformation (primary structure from recent NMR spectroscopy at pH = 5), the peptide exhibits a stable and less kinked structure in the lipid bilayer compared to that from the NMR studies. The relative fusogenic behavior of the different conformations has been investigated by calculation of the relative free energy of insertion into the hydrophobic region of lipid bilayer as a function of the depth of immersion. For the HA7 conformations (primary structure from recent NMR spectroscopy at pH = 7.4), while the N-terminal helix preserves its initial structure, the flexible C-terminal chain produces a transient helical motif inside the lipid bilayer. This conformational change is pH-independent, and is closely related to the peptide insertion into the lipid bilayer.  相似文献   
999.
We determined the 2.45 A crystal structure of the nucleosome core particle from Drosophila melanogaster and compared it to that of Xenopus laevis bound to the identical 147 base-pair DNA fragment derived from human alpha-satellite DNA. Differences between the two structures primarily reflect 16 amino acid substitutions between species, 15 of which are in histones H2A and H2B. Four of these involve histone tail residues, resulting in subtly altered protein-DNA interactions that exemplify the structural plasticity of these tails. Of the 12 substitutions occurring within the histone core regions, five involve small, solvent-exposed residues not involved in intraparticle interactions. The remaining seven involve buried hydrophobic residues, and appear to have coevolved so as to preserve the volume of side chains within the H2A hydrophobic core and H2A-H2B dimer interface. Thus, apart from variations in the histone tails, amino acid substitutions that differentiate Drosophila from Xenopus histones occur in mutually compensatory combinations. This highlights the tight evolutionary constraints exerted on histones since the vertebrate and invertebrate lineages diverged.  相似文献   
1000.
Dopaminergic neurodegeneration during Parkinson disease (PD) involves several pathways including proteasome inhibition, alpha-synuclein (alpha-syn) aggregation, mitochondrial dysfunction, and glutathione (GSH) depletion. We have utilized a systems biology approach and built a dynamic model to understand and link the various events related to PD pathophysiology. We have corroborated the modeling data by examining the effects of alpha-syn expression in the absence and presence of proteasome inhibition on GSH metabolism in dopaminergic neuronal cultures. We report here that the expression of the mutant A53T form of alpha-syn is neurotoxic and causes GSH depletion in cells after proteasome inhibition, compared to wild-type alpha-syn-expressing cells and vector control. Modeling data predicted that GSH depletion in these cells was due to ATP loss associated with mitochondrial dysfunction. ATP depletion elicited by combined A53T expression and proteasome inhibition results in decreased de novo synthesis of GSH via the rate-limiting enzyme gamma-glutamyl cysteine ligase. Based on these data and other recent reports, we propose a novel dynamic model to explain how the presence of mutated alpha-syn protein or proteasome inhibition may individually impact on mitochondrial function and in combination result in alterations in GSH metabolism via enhanced mitochondrial dysfunction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号