首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   507篇
  免费   26篇
  533篇
  2023年   6篇
  2022年   13篇
  2021年   18篇
  2020年   12篇
  2019年   18篇
  2018年   15篇
  2017年   9篇
  2016年   20篇
  2015年   27篇
  2014年   28篇
  2013年   37篇
  2012年   32篇
  2011年   37篇
  2010年   24篇
  2009年   19篇
  2008年   21篇
  2007年   23篇
  2006年   12篇
  2005年   11篇
  2004年   11篇
  2003年   7篇
  2002年   6篇
  2001年   11篇
  2000年   9篇
  1999年   8篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1994年   2篇
  1992年   4篇
  1991年   6篇
  1990年   8篇
  1989年   10篇
  1988年   3篇
  1987年   3篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1972年   3篇
  1971年   3篇
排序方式: 共有533条查询结果,搜索用时 0 毫秒
121.
The JAK2-V617F mutation is an important etiologic factor for the development of myeloproliferative neoplasms. The mechanism by which this mutated tyrosine kinase initiates deregulated signals in cells is not completely understood. It is believed that JAK2-V617F requires interactions with homodimeric cytokine receptors to elicit its transforming signal. In this study, we demonstrate that components of heterodimeric cytokine receptors can also activate JAK2-V617F. Expression of IL27Ra, a heterodimeric receptor component, enhanced the activation of JAK2-V617F and subsequent downstream signaling to activation of STAT5 and ERK. In addition, expression of components of the interleukin-3 receptor, IL3Ra and the common β chain, activated JAK2-V617F as well as STAT5 and ERK. Importantly, expression of IL27Ra functionally replaced the requirement of a homodimeric cytokine receptor to promote the activation and transforming activity of JAK2-V617F in BaF3 cells. Tyrosine phosphorylation of IL27Ra was not required to induce activation of JAK2-V617F or STAT5, or to enhance the transforming activity of JAK2-V617F. Expression of IL3Ra or the common β chain in BaF3 cells also enhanced the ability of JAK2-V617F to transform these hematopoietic cells. However, the heterodimeric receptor component IL12RB1 did not enhance the activation or transforming signals of JAK2-V617F in BaF3 cells. IL27Ra also activated the K539L and R683G JAK2 mutants. Together our data demonstrate that in addition to homodimeric receptors, some heterodimeric receptor components can support the activation and transforming signals of JAK2-V617F and other JAK2 mutants. Therefore, heterodimeric receptors may play unappreciated roles in JAK2 activation in the development of hematopoietic diseases including myeloproliferative neoplasms.  相似文献   
122.
123.
124.
Infectious diseases are the leading causes of death worldwide. Hence, there is a need to develop new antimicrobial agents. Traditional method of drug discovery is time consuming and yields a few drug targets with little intracellular information for guiding target selection. Thus, focus in drug development has been shifted to computational comparative genomics for identifying novel drug targets. Leptospirosis is a worldwide zoonosis of global concern caused by Leptospira interrogans. Availability of L. interrogans serovars and human genome sequences facilitated to search for novel drug targets using bioinformatics tools. The genome sequence of L. interrogans serovar Copenhageni has 5,124 genes while that of serovar Lai has 4,727 genes. Through subtractive genomic approach 218 genes in serovar Copenhageni and 158 genes in serovar Lai have been identified as putative drug targets. Comparative genomic approach had revealed that 88 drug targets were common to both the serovars. Pathway analysis using the Kyoto Encyclopaedia of Genes and Genomes revealed that 66 targets are enzymes and 22 are non-enzymes. Sixty two common drug targets were predicted to be localized in cytoplasm and 16 were surface proteins. The identified potential drug targets form a platform for further investigation in discovery of novel therapeutic compounds against Leptospira.  相似文献   
125.
Epidemiological studies implicate stress as an important factor contributing to the increasing prevalence of metabolic disorders. Studies have correlated visceral obesity and atherosclerosis with hyper-cortisolemia, a sequela of chronic psychological stress in humans and animals. Although several hormonal markers of stress have been associated with various metabolic disorders, the mechanism by which these hormones alter metabolic functions have not been established. We used an in vitro model system, culturing 3T3-L1 pre-adipocytes and RAW 264.7 macrophages in the presence or absence of cortisol, to analyze cell signaling pathways mediating changes in metabolic functions. Our analysis revealed that cortisol up-regulated the expression and function of two serotonin (S) receptors, HTR2c and HTR5a. HTR2c and HTR5a were also directly involved in mediating cortisol enhanced adipogenesis when pre-adipocytes were cultured alone or in the presence of macrophages. Finally, cortisol treatment of pre-adipocytes co-cultured with macrophages enhanced adipogenesis in both macrophages and pre-adipocytes.  相似文献   
126.
Glioblastoma multiforme (GBM) is a frequent and aggressive glial tumor, containing a small population of therapy-resistant cells, glioma stem cells (GSCs). Current dogma suggests that tumors regrow from GSCs, and these cells contribute to therapy resistance, poor prognosis, and recurrence; highlighting the importance of GSCs in glioma pathophysiology and therapeutic targeting. Macroautophagy/autophagy-based cellular homeostasis can be changed from pro-survival to pro-cell death by modulating SDCBP/MDA-9/Syntenin (syndecan binding protein)-mediated signaling. In nonadherent conditions, GSCs display protective autophagy and anoikis-resistance, which correlates with expression of SDCBP/MDA-9/Syntenin. Conversely, SDCBP/MDA-9/Syntenin silencing induces autophagic death in GSCs, indicating that SDCBP/MDA-9/Syntenin regulates protective autophagy in GSCs under anoikis conditions. This process is mediated through phosphorylation of the anti-apoptotic protein BCL2 accompanied with suppression of high levels of autophagic proteins (ATG5, LAMP1, LC3B) through EGFR signaling. SDCBP/MDA-9/Syntenin-mediated regulation of BCL2 and EGFR phosphorylation is achieved through PTK2/FAK and PRKC/PKC signaling. When SDCBP/MDA-9/Syntenin is absent, this protective mechanism is deregulated, leading to highly elevated and sustained levels of autophagy and consequently decreased cell survival. Our recent paper reveals a novel functional link between SDCBP/MDA-9/Syntenin expression and protective autophagy in GSCs. These new insights into SDCBP/MDA-9/Syntenin-mediated regulation and maintenance of GSCs present leads for developing innovative combinatorial cancer therapies.  相似文献   
127.
128.
The Toll-like receptor (TLR) family plays a fundamental role in host innate immunity by mounting a rapid and potent inflammatory response to pathogen infection. TLRs recognize distinct microbial components and activate intracellular signaling pathways that induce expression of host inflammatory genes. Several studies have indicated that TLRs are implicated in many inflammatory and immune disorders. Extensive research in the past decade to understand TLR-mediated mechanisms of innate immunity has enabled pharmaceutical companies to begin to develop novel therapeutics for the purpose of controlling an inflammatory disease. The roles of TLRs in the development of autoimmune diseases have been studied. TLR7 and TLR9 have key roles in production of autoantibodies and/or in development of systemic autoimmune disease. It remains to be determined their role in apoptosis, in the pathogenesis of RNA containing immune complexes, differential expression of TLRs by T regulatory cells.  相似文献   
129.
Hedgehog is an evolutionarily conserved developmental pathway, widely implicated in controlling various cellular responses such as cellular proliferation and stem cell renewal in human and other organisms, through external stimuli. Aberrant activation of this pathway in human adult stem cell line may cause different types of cancers. Hence, targeting this pathway in cancer therapy has become indispensable, but the non availability of detailed molecular interactions, complex regulations by extra- and intra-cellular proteins and cross talks with other pathways pose a serious challenge to get a coherent understanding of this signaling pathway for making therapeutic strategy. This motivated us to perform a computational study of the pathway and to identify probable drug targets. In this work, from available databases and literature, we reconstructed a complete hedgehog pathway which reports the largest number of molecules and interactions to date. Using recently developed computational techniques, we further performed structural and logical analysis of this pathway. In structural analysis, the connectivity and centrality parameters were calculated to identify the important proteins from the network. To capture the regulations of the molecules, we developed a master Boolean model of all the interactions between the proteins and created different cancer scenarios, such as Glioma, Colon and Pancreatic. We performed perturbation analysis on these cancer conditions to identify the important and minimal combinations of proteins that can be used as drug targets. From our study we observed the under expressions of various oncoproteins in Hedgehog pathway while perturbing at a time the combinations of the proteins GLI1, GLI2 and SMO in Glioma; SMO, HFU, ULK3 and RAS in Colon cancer; SMO, HFU, ULK3, RAS and ERK12 in Pancreatic cancer. This reconstructed Hedgehog signaling pathway and the computational analysis for identifying new combinatory drug targets will be useful for future in-vitro and in-vivo analysis to control different cancers.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号