首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4125篇
  免费   234篇
  国内免费   1篇
  2023年   30篇
  2022年   53篇
  2021年   100篇
  2020年   59篇
  2019年   56篇
  2018年   89篇
  2017年   83篇
  2016年   108篇
  2015年   155篇
  2014年   176篇
  2013年   247篇
  2012年   267篇
  2011年   269篇
  2010年   201篇
  2009年   138篇
  2008年   193篇
  2007年   227篇
  2006年   173篇
  2005年   162篇
  2004年   143篇
  2003年   115篇
  2002年   96篇
  2001年   76篇
  2000年   77篇
  1999年   67篇
  1998年   29篇
  1997年   29篇
  1996年   21篇
  1995年   33篇
  1994年   29篇
  1993年   30篇
  1992年   50篇
  1991年   41篇
  1990年   32篇
  1989年   42篇
  1988年   41篇
  1987年   48篇
  1986年   53篇
  1985年   34篇
  1984年   48篇
  1983年   33篇
  1982年   30篇
  1981年   31篇
  1980年   33篇
  1979年   43篇
  1977年   46篇
  1976年   23篇
  1975年   29篇
  1974年   34篇
  1972年   23篇
排序方式: 共有4360条查询结果,搜索用时 15 毫秒
991.
992.
Perspectives of plant-associated microbes in heavy metal phytoremediation   总被引:6,自引:0,他引:6  
"Phytoremediation" know-how to do-how is rapidly expanding and is being commercialized by harnessing the phyto-microbial diversity. This technology employs biodiversity to remove/contain pollutants from the air, soil and water. In recent years, there has been a considerable knowledge explosion in understanding plant-microbes-heavy metals interactions. Novel applications of plant-associated microbes have opened up promising areas of research in the field of phytoremediation technology. Various metabolites (e.g., 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophores, organic acids, etc.) produced by plant-associated microbes (e.g., plant growth promoting bacteria, mycorrhizae) have been proposed to be involved in many biogeochemical processes operating in the rhizosphere. The salient functions include nutrient acquisition, cell elongation, metal detoxification and alleviation of biotic/abiotic stress in plants. Rhizosphere microbes accelerate metal mobility, or immobilization. Plants and associated microbes release inorganic and organic compounds possessing acidifying, chelating and/or reductive power. These functions are implicated to play an essential role in plant metal uptake. Overall the plant-associated beneficial microbes enhance the efficiency of phytoremediation process directly by altering the metal accumulation in plant tissues and indirectly by promoting the shoot and root biomass production. The present work aims to provide a comprehensive review of some of the promising processes mediated by plant-associated microbes and to illustrate how such processes influence heavy metal uptake through various biogeochemical processes including translocation, transformation, chelation, immobilization, solubilization, precipitation, volatilization and complexation of heavy metals ultimately facilitating phytoremediation.  相似文献   
993.
Caves provide excellent settings to examine evolutionary questions. Subterranean environments are characterized by similar and consistent conditions. Cave-adapted species often share characteristics such as diminished pigmentation, elongated limbs and reduced or absent eyes. Relatively little is known about the evolution and development of troglomorphic traits in invertebrates. In this study, we compare expression of the eye development genes hedgehog, pax6, sine oculis and dachshund in individuals from multiple independently derived cave populations of the amphipod Gammarus minus. hedgehog expression was significantly reduced in cave populations, compared to genetically related surface populations. Interestingly, no differences were found in pax6, sine oculis or dachshund expression. Because hedgehog-related genes are also involved in eye reduced in Astyanax mexicanus, these genes may be consistent targets of evolution during cave adaptation. These results provide support for the hypothesis of genomic 'hotspots' of evolution and allow comparison of adaptive mechanisms among diverse animals in subterranean environments.  相似文献   
994.
Stimulation of beta-adrenergic receptors (betaARs) leads to sequential recruitment of beta-arrestin, AP-2 adaptor protein, clathrin, and dynamin to the receptor complex, resulting in endocytosis. Whether a dynamic actin cytoskeleton is required for betaAR endocytosis is not known. In this study, we have used beta(1)- and beta(2) ARs, two ubiquitously expressed members of the betaAR family, to comprehensively evaluate the requirement of the actin cytoskeleton in receptor internalization. The integrity of the actin cytoskeleton was manipulated with the agent latrunculin B (LB) and mutants of cofilin to depolymerize actin filaments. Treatment of cells with LB resulted in dose-dependent depolymerization of the cortical actin cytoskeleton that was associated with significant attenuation in internalization of beta(2)ARs, beta(1)ARs, and mutants of beta(1)ARs that internalize via either clathrin- or caveolin-dependent pathways. Importantly, LB treatment did not inhibit beta-arrestin translocation or dynamin recruitment to the agonist-stimulated receptor. To unequivocally demonstrate the requirement of the actin cytoskeleton for beta(2)AR endocytosis, we used an actin-binding protein cofilin that biochemically depolymerizes and severs actin filaments. Isoproterenol-mediated internalization of beta(2)AR was completely blocked in the presence of wild type cofilin, which could be rescued by a mutant of cofilin that mimics a constitutive phosphorylated state and leads to normal agonist-stimulated beta(2)AR endocytosis. Finally, treatment with jasplakinolide, an inhibitor of actin turnover, resulted in dose-dependent inhibition of beta(2)AR internalization, suggesting that turnover of actin filaments at the receptor complex is required for endocytosis. Taken together, these data demonstrate that intact and functional dynamic actin cytoskeleton is required for normal betaAR internalization.  相似文献   
995.
996.
997.
In view of the known involvement of oxidative stress and calcineurin (Ca2+-calmodulin dependent protein phosphatase) in β-Adrenergic stimulated events, we examined the influence of eugenol (an antioxidant generally regarded as safe by the Food and Agricultural Organization of the United Nations) on isoproterenol-induced apoptosis in neonatal cardiomyocytes. In comparison to unstimulated controls, cardiomyocytes stimulated with 50 μM isoproterenol for 48 h demonstrated (a) increased intracellular Ca2+ levels (b) oxidative stress involving enhanced reactive oxygen species, decreased GSH/GSSG ratio, enhanced lipid peroxidation, increased activities of superoxide dismutase and glutathione peroxidase (c) apoptosis, evidenced by increased number of annexin V/TUNEL positive cells, enhanced membrane fluidity, decreased mitochondrial membrane potential, increased activities of caspase 3 and 9 along with (d) increased calcineurin activity. Pre-incubation of cardiomyocytes with 100 μM eugenol for 1 h, followed by isoproterenol treatment for 48 h, led to reversal of enhanced intracellular Ca2+ levels, oxidative stress, calcineurin activation and apoptosis caused by isoproterenol. In addition, similar treatment of cardiomyocytes with 10 nM FK506, a calcineurin inhibitor, could also attenuate isoproterenol-induced apoptosis. These results indicate the beneficial effects of eugenol in preventing cardiomyocyte apoptosis.  相似文献   
998.
999.
1000.
Two pot experiments were conducted in two different seasons at the University of Agricultural Science, Bangalore, India, to study (a) the relationship between chlorophyll concentration (by measuring the leaf light‐transmittance characteristics using a SPAD metre) and transpiration efficiency (TE) and (b) the effect of leaf N on chlorophyll and TE relationship in peanut. In Experiment (Expt) I, six peanut genotypes with wide genetic variation for the specific leaf area (SLA) were used. In Expt II, three non‐nodulating isogenic lines were used to study the effect of N levels on leaf chlorophyll concentration–TE relationship without potential confounding effects in biological nitrogen fixation. Leaf N was manipulated by applying N fertiliser in Expt II. Chlorophyll concentration, TE (g dry matter kg?1 of H2O transpired, measured using gravimetric method), specific leaf nitrogen (g N m?2, SLN), SLA (cm2 g?1), carbon isotope composition (Δ13C) were determined in the leaves sampled during the treatment period (35–55 days after sowing) in the two experiments. Results showed that the leaf chlorophyll concentration expressed as soil plant analytical development (SPAD) chlorophyll metre reading (SCMR) varied significantly among genotypes in Expt I and as a result of N application in Expt II. Changes in leaf N levels were strongly associated with changes in SCMR, TE and Δ13C. In both the experiments, a significant positive relationship between SCMR and TE with similar slopes but differing intercepts was noticed. However, correction of TE for seasonal differences in vapour pressure deficit (VPD) between the two experiments resulted in a single and stronger relationship between SCMR and TE. There was a significant inverse relationship between SCMR and Δ13C, suggesting a close linkage between chlorophyll concentration and Δ13C in peanut. This study provides the first evidence for a significant positive relationship between TE and leaf chlorophyll concentration in peanut. The study also describes the effect of growing environment on the relationships among SLA, SLN and SCMR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号