首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   6篇
  175篇
  2023年   1篇
  2022年   4篇
  2021年   9篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2016年   8篇
  2015年   5篇
  2014年   10篇
  2013年   9篇
  2012年   18篇
  2011年   11篇
  2010年   9篇
  2009年   10篇
  2008年   16篇
  2007年   10篇
  2006年   11篇
  2005年   7篇
  2004年   5篇
  2003年   6篇
  2002年   7篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有175条查询结果,搜索用时 0 毫秒
101.
102.
RELAY CELLS ARE PREVALENT THROUGHOUT SENSORY SYSTEMS AND RECEIVE TWO TYPES OF INPUTS: driving and modulating. The driving input contains receptive field properties that must be transmitted while the modulating input alters the specifics of transmission. For example, the visual thalamus contains relay neurons that receive driving inputs from the retina that encode a visual image, and modulating inputs from reticular activating system and layer 6 of visual cortex that control what aspects of the image will be relayed back to visual cortex for perception. What gets relayed depends on several factors such as attentional demands and a subject's goals. In this paper, we analyze a biophysical based model of a relay cell and use systems theoretic tools to construct analytic bounds on how well the cell transmits a driving input as a function of the neuron's electrophysiological properties, the modulating input, and the driving signal parameters. We assume that the modulating input belongs to a class of sinusoidal signals and that the driving input is an irregular train of pulses with inter-pulse intervals obeying an exponential distribution. Our analysis applies to any [Formula: see text] order model as long as the neuron does not spike without a driving input pulse and exhibits a refractory period. Our bounds on relay reliability contain performance obtained through simulation of a second and third order model, and suggest, for instance, that if the frequency of the modulating input increases or the DC offset decreases, then relay increases. Our analysis also shows, for the first time, how the biophysical properties of the neuron (e.g. ion channel dynamics) define the oscillatory patterns needed in the modulating input for appropriately timed relay of sensory information. In our discussion, we describe how our bounds predict experimentally observed neural activity in the basal ganglia in (i) health, (ii) in Parkinson's disease (PD), and (iii) in PD during therapeutic deep brain stimulation. Our bounds also predict different rhythms that emerge in the lateral geniculate nucleus in the thalamus during different attentional states.  相似文献   
103.
Focus in this Letter is made to design and synthesize a series of nineteen new 6-(4-((substituted-1H-1,2,3-triazol-4-yl)methyl)piperazin-1-yl)phenanthridine analogues employing click chemistry and evaluated for their anti-tubercular activity against Mycobacterium tuberculosis H37Rv. Among the tested compounds, 7f and 7j exhibited good activity (MIC = 3.125 μg/mL), while 8a displayed excellent activity (MIC = 1.56 μg/mL) against the growth of M. tuberculosis H37Rv. In addition, 7f, 7j and 8a compounds were subjected to cytotoxic studies against mouse macrophage (RAW264.7) cell lines and the selectivity index values are >15 indicating suitability of compounds for further drug development.  相似文献   
104.
DNA damage activates nuclear Abl tyrosine kinase to stimulate intrinsic apoptosis in cancer cell lines and mouse embryonic stem cells. To examine the in vivo function of nuclear Abl in apoptosis, we generated Abl-μNLS (μ, mutated in nuclear localization signals) mice. We show here that cisplatin-induced apoptosis is defective in the renal proximal tubule cells (RPTC) from the Ablμ/μ mice. When injected with cisplatin, we found similar levels of platinum in the Abl+/+ and the Ablμ/μ kidneys, as well as similar initial inductions of p53 and PUMAα expression. However, the accumulation of p53 and PUMAα could not be sustained in the Ablμ/μ kidneys, leading to reductions in renal apoptosis and tubule damage. Co-treatment of cisplatin with the Abl kinase inhibitor, imatinib, reduced the accumulation of p53 and PUMAα in the Abl+/+ but not in the Ablμ/μ kidneys. The residual apoptosis in the Ablμ/μ mice was not further reduced in the Ablμ/μ; p53−/− double-mutant mice, suggesting that nuclear Abl and p53 are epistatic to each other in this apoptosis response. Although apoptosis and tubule damage were reduced, cisplatin-induced increases in phospho-Stat-1 and blood urea nitrogen were similar between the Abl+/+ and the Ablμ/μ kidneys, indicating that RPTC apoptosis is not the only factor in cisplatin-induced nephrotoxicity. These results provide in vivo evidence for the pro-apoptotic function of Abl, and show that its nuclear localization and tyrosine kinase activity are both required for the sustained expression of p53 and PUMAα in cisplatin-induced renal apoptosis.  相似文献   
105.
106.
Pancreatic ductal adenocarcinoma (PDAC) is difficult to detect early and is often resistant to standard chemotherapeutic options, contributing to extremely poor disease outcomes. Members of the nuclear receptor superfamily carry out essential biological functions such as hormone signaling and are successfully targeted in the treatment of endocrine-related malignancies. Liver X receptors (LXRs) are nuclear receptors that regulate cholesterol homeostasis, lipid metabolism, and inflammation, and LXR agonists have been developed to regulate LXR function in these processes. Intriguingly, these compounds also exhibit antiproliferative activity in diverse types of cancer cells. In this study, LXR agonist treatments disrupted proliferation, cell-cycle progression, and colony-formation of PDAC cells. At the molecular level, treatments downregulated expression of proteins involved in cell cycle progression and growth factor signaling. Microarray experiments further revealed changes in expression profiles of multiple gene networks involved in biological processes and pathways essential for cell growth and proliferation following LXR activation. These results establish the antiproliferative effects of LXR agonists and potential mechanisms of action in PDAC cells and provide evidence for their potential application in the prevention and treatment of PDAC.  相似文献   
107.
Sridevi K  Udgaonkar JB 《Biochemistry》2003,42(6):1551-1563
The denaturant-induced unfolding kinetics of the 89-residue protein, barstar, have been examined using fluorescence resonance energy transfer (FRET) at 25 degrees C and pH 8.0. The core tryptophan, Trp53, in barstar serves as a fluorescence donor, and a thionitrobenzoic acid moiety (TNB) attached to a cysteine residue acts as an acceptor to form an efficient FRET pair. Four different single-cysteine containing mutants of barstar with cysteine residues at positions 25, 40, 62, and 82 were studied. The unfolding kinetics of the four mutant forms of barstar were monitored by measurement of the changes in the fluorescence intensity of Trp53 in the unlabeled and TNB-labeled proteins. The rate of change of fluorescence of the single-tryptophan residue, Trp53, in the unlabeled protein, where no FRET occurs, yields the rate of solvation of the core. This rate is similar for all four unlabeled proteins. The rate of the increase in the fluorescence of Trp53 in the labeled protein, where FRET from the tryptophan to the TNB label occurs, yields the rate of decrease in FRET efficiency during unfolding. The decrease in FRET efficiency for proteins labeled at either of the two buried positions (Cys40 or Cys82) occurs at a rate similar to the rate of core solvation. The decrease in FRET efficiency for the acceptor at Cys40 is also shown to be sensitive to the isomerization of the Tyr47-Pro48 cis bond. For the proteins where the label is at a solvent-exposed position (Cys25 and Cys62), the decrease in FRET efficiency occurs in two kinetic phases; 15-25% of the FRET efficiency decreases in the faster phase, and the remaining FRET efficiency decreases in a slower phase, the rate of which is the same as the rate of core solvation. These results clearly indicate that, during unfolding, the protein surface expands faster than, and independently of, water intrusion into the core.  相似文献   
108.
Aspergillus niger produces multiple forms of polygalacturonases with molecular masses ranging from 30 to 60 kDa. The high molecular weight polygalacturonase (61 ± 2 kDa) from A. niger possesses a pH optimum of 4.3 and a pI of 3.9. The enzyme exhibited high sensitivity, both in terms of activity and structure, in the pH range of 4.3–7.0. The enzyme was irreversibly inactivated at pH 7.0. The enzyme is predominantly rich in parallel β structure. There is unfolding of the enzyme molecule between 4.3 and 7.0 resulting in irreversible loss of secondary and tertiary structure with the exposure of hydrophobic surfaces. ANS binding measurements, intrinsic fluorescence and acrylamide quenching measurements have confirmed the unfolding and exposure of hydrophobic surfaces. The midpoint of pH transition for both activity and secondary structure is 6.2 ± 0.1. The pH-induced changes of polygalacturonase confirm the role of histidine residues in structure and activity of the enzyme. The irreversible nature of inactivation is due to the unfolding induced exposure of hydrophobic surfaces leading to association/aggregation of the molecule. Size exclusion chromatography measurements have established the association of enzyme at higher pH. Urea induced unfolding measurements at pH 4.3 and 7.0 have confirmed the loss in stability as we approach neutral pH.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号