首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   13篇
  2023年   2篇
  2022年   5篇
  2021年   12篇
  2020年   6篇
  2019年   8篇
  2018年   9篇
  2017年   8篇
  2016年   19篇
  2015年   23篇
  2014年   12篇
  2013年   13篇
  2012年   19篇
  2011年   25篇
  2010年   15篇
  2009年   12篇
  2008年   20篇
  2007年   16篇
  2006年   23篇
  2005年   11篇
  2004年   10篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1985年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1973年   1篇
  1971年   1篇
  1963年   1篇
排序方式: 共有316条查询结果,搜索用时 62 毫秒
41.
Promoter sequences of a 795 bp cinnamoyl CoA reductase (LlCCR) and 1,882 bp cinnamyl alcohol dehydrogenase (LlCAD) genes were isolated from Leucaena leucocephala, a leguminous tree species by genome walking, and analysed using bioinformatics tools. This revealed presence of cis-elements such as AC-boxes, XYLAT, WRKY, and MYB binding sites in addition to CAAT and TATA boxes. For functional characterization, each of LlCCR and LlCAD promoter sequences were fused to β-glucuronidase (GUS) reporter gene, immobilized into pBI101 plasmid, and introduced into tobacco via Agrobacterium tumefaciens strain LBA4404. Histochemical observations of transgenic lines indicated tissue-specific expression of GUS in the vascular tissues of leaves, stems, and roots. These results demonstrate that GUS expression driven by either LlCCR or LlCAD promoters were involved in lignifying tissues, and more specifically in differentiating xylem cells. This observed tissue-specific expression driven by either LlCCR or LlCAD promoters is sufficient for reducing the lignin content only in vascular tissues, thus overcoming the risks and challenges associated with down-regulation of lignin content in whole plants.  相似文献   
42.
43.
The CCCTC-binding factor CTCF is the only known vertebrate insulator protein and has been shown to regulate important developmental processes such as imprinting, X-chromosome inactivation and genomic architecture. In this study, we examined the role of CTCF in human embryonic stem cell (hESC) biology. We demonstrate that CTCF associates with several important pluripotency genes, including NANOG, SOX2, cMYC and LIN28 and is critical for hESC proliferation. CTCF depletion impacts expression of pluripotency genes and accelerates loss of pluripotency upon BMP4 induced differentiation, but does not result in spontaneous differentiation. We find that CTCF associates with the distal ends and internal sites of the co-regulated 160 kb NANOG-DPPA3-GDF3 locus. Each of these sites can function as a CTCF-dependent enhancer-blocking insulator in heterologous assays. In hESCs, CTCF exists in multisubunit protein complexes and can be poly(ADP)ribosylated. Known CTCF cofactors, such as Cohesin, differentially co-localize in the vicinity of specific CTCF binding sites within the NANOG locus. Importantly, the association of some cofactors and protein PARlation selectively changes upon differentiation although CTCF binding remains constant. Understanding how unique cofactors may impart specialized functions to CTCF at specific genomic locations will further illuminate its role in stem cell biology.  相似文献   
44.
45.
Claudins belong to a large family of transmembrane proteins that localize at tight junctions (TJs) where they play a central role in regulating paracellular transport of solutes and nutrients across epithelial monolayers. Their ability to regulate the paracellular pathway is highly influenced by changes in extracellular pH. However, the effect of changes in pH on the strength and kinetics of claudin mediated adhesion is poorly understood. Using atomic force microscopy, we characterized the kinetic properties of homophilic trans-interactions between full length recombinant GST tagged Claudin-2 (Cldn2) under different pH conditions. In measurements covering three orders of magnitude change in force loading rate of 102–104 pN/s, the Cldn2/Cldn2 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier throughout pH range of 4.5–8. Comparing to the neutral condition (pH 6.9), differences in the inner energy barriers for the dissociation of Cldn2/Cldn2 mediated interactions at acidic and alkaline environments were found to be < 0.65 kBT, which is much lower than the outer dissociation energy barrier (> 1.37 kBT). The relatively stable interaction of Cldn2/Cldn2 in neutral environment suggests that electrostatic interactions may contribute to the overall adhesion strength of Cldn2 interactions. Our results provide an insight into the changes in the inter-molecular forces and adhesion kinetics of Cldn2 mediated interactions in acidic, neutral and alkaline environments.  相似文献   
46.
罗氏沼虾诺达病毒的核酸检测及其部分序列分析   总被引:1,自引:0,他引:1  
根据安替列群岛分离的罗氏沼虾诺达病毒株基因组序列(MrNV-ant),制备特异性核酸探针,设计特异性引物,用点杂交和RT-PCR的方法检测在中国境内分离的罗氏沼虾诺达病毒(MrNV-chin).点杂交的方法可以检测出少于26ng的患肌肉白浊症的组织样品中的病毒,或少于25ng的病毒RNA样品;RT-PCR可以检测出少于25pg的RNA样品.扩增的MrNV-chin RNA1序列长858个核苷酸,与MrNV-ant的核苷酸一致率为957%,两者翻译后的氨基酸序列的一致率为99.7%.扩增的MrNV-chin RNA 2序列长1121个核苷酸,与MrNV-ant的核苷酸一致率为92%,两者翻译后的氨基酸序列的一致率为93.2%.因此,MrNV-ant和MrNV-chin应属于同一种病毒的不同分离株.用两株罗氏沼虾诺达病毒的RNA聚合酶序列与其它6株诺达病毒RNA聚合酶序列比较后构建的进化树中,罗氏沼虾诺达病毒与Alphanodavirus的亲缘关系近于与Betanodavirus的亲缘,组成了一个新的分支.  相似文献   
47.
This study aimed to evaluate the applicability of the Australian River Assessment System (AUSRIVAS) bioassessment methodology to assess the biological health of streams in the upper-middle Brantas River catchment, East Java, Indonesia. A total of 84 `minimally disturbed' reference sites were selected and sampled for macroinvertebrates in riffle habitats. Sampling of macroinvertebrates and identification to family level was conducted by local biologists following intensive training, and under supervision. A quality control protocol was introduced to ensure the data were reliable and reproducible. A suite of `potential predictor' and `monitoring' environmental variables were also measured at each site. The macroinvertebrate data were used to develop a predictive AUSRIVAS model for the upper-middle Brantas river, and the model was then used to assess the `health' of 15 test sites in the catchment. Bioassessment outputs – Observed (O)/Expected (E) ratios – were found to be broadly related to measures of physical disturbance from land use and riparian degradation. Through the process of local reference site selection and sampling, model development, validation and subsequent use, the Australian AUSRIVAS rapid bioassessment method was assessed as being highly applicable to the upper-middle catchment sections of Indonesian river systems.  相似文献   
48.
49.
We aimed to verify a custom virtual fields method (VFM) to estimate the patient-specific biomechanical properties of human optic nerve head (ONH) tissues, given their full-field deformations induced by intraocular pressure (IOP). To verify the accuracy of VFM, we first generated ‘artificial’ ONH displacements from predetermined (known) ONH tissue biomechanical properties using finite element analysis. Using such deformations, if we are able to match back the known biomechanical properties, it would indicate that our VFM technique is accurate. The peripapillary sclera was assumed anisotropic hyperelastic, while all other ONH tissues were considered isotropic. The simulated ONH displacements were fed into the VFM algorithm to extract back the biomechanical properties. The robustness of VFM was also tested against rigid body motions and noise added to the simulated displacements. Then, the computational speed of VFM was compared to that of a gold-standard stiffness measurement method (inverse finite element method or IFEM). Finally, as proof of principle, VFM was applied to IOP-induced ONH deformation data (obtained from one subject’s eye imaged with OCT), and the biomechanical properties of the prelamina and lamina cribrosa (LC) were extracted. From given ONH displacements, VFM successfully matched back the biomechanical properties of ONH tissues with high accuracy and efficiency. For all parameters, the percentage errors were less than 0.05%. Our method was insensitive to rigid body motions and was also able to recover the material parameters in the presence of noise. VFM was also found 125 times faster than the gold-standard IFEM. Finally, the estimated shear modulus for the prelamina and the LC of the studied subject’s eye were 33.7 and 63.5 kPa, respectively. VFM may be capable of measuring the biomechanical properties of ONH tissues with high speed and accuracy. It has potential in identifying patient-specific ONH biomechanical properties in the clinic if combined with optical coherence tomography.  相似文献   
50.
Food Competition Between Wild Orangutans in Large Fig Trees   总被引:1,自引:0,他引:1  
Orangutans are usually solitary. However, occasionally aggregations are formed, especially in large fruiting fig trees. Individuals in these aggregations may experience scramble or contest competition for food. We investigated the type and strength of food competition in large figs among wild Sumatran orangutans. Adult males foraged more efficiently than adult females and subadult males did. The availability of ripe fruit is positively related to the number of orangutans visiting a fig tree and their foraging efficiency. The number of orangutans in a fig tree did not affect patch residence time and foraging behavior, though orangutans spent more time feeding when aggregation size increased in a fig tree. Dominance relationships could be measured in a number of dyads. Differences in dominance did not affect foraging behavior. The patch residence time of subordinate individuals was reduced on days that a dominant individual also visited the fig. In conclusion, orangutans seem to adjust aggregation size to the number of available ripe fruits in a fig tree in such a way that scramble competition was absent. Contest competition determined access to large fig trees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号