全文获取类型
收费全文 | 92篇 |
免费 | 2篇 |
专业分类
94篇 |
出版年
2021年 | 1篇 |
2020年 | 1篇 |
2019年 | 2篇 |
2015年 | 4篇 |
2014年 | 4篇 |
2013年 | 4篇 |
2012年 | 7篇 |
2011年 | 8篇 |
2010年 | 3篇 |
2009年 | 8篇 |
2008年 | 7篇 |
2007年 | 5篇 |
2006年 | 2篇 |
2005年 | 9篇 |
2004年 | 4篇 |
2003年 | 4篇 |
2001年 | 7篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1990年 | 1篇 |
1988年 | 2篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1978年 | 1篇 |
排序方式: 共有94条查询结果,搜索用时 5 毫秒
51.
52.
Natural peanut agglutinin (PNA) gene is expressed with a signal sequence of 23 amino acids and a C terminal peptide of 14 amino acids. Functionally active recombinant PNA having apparent subunit molecular weight of 29kD was obtained when expressed without signal peptide and non-essential C terminal peptide sequences in insect cells. Expression in insect cells (Sf9) was driven by a 129bp Spodoptera litura nucleopolyhedrosis virus (S/NPV) sequence containing its polyhedrin promoter. 相似文献
53.
Summary During xylose fermentation byCandida
shehatae ATCC 22984 with batch cell recycling, the volumetric ethanol fermentation rate increased two-fold, and the xylitol production rate increased three-fold as the cell density increased to ten-fold. In continuous fermentation with membrane-assisted cell recycle, the fermentation rates increased almost linearly with increasing agitation rates up to 300 rpm. The maximum continuous ethanol production rates obtained with 90 and 200 g L–1 xylose were respectively 2.4 and 4.4 g L–1h–1. The cell density was 65–70 g (dry wt) L–1. Ethanol yields ranged from 0.26 to 0.41 g g–1. 相似文献
54.
Liu P Erez A Nagamani SC Dhar SU Kołodziejska KE Dharmadhikari AV Cooper ML Wiszniewska J Zhang F Withers MA Bacino CA Campos-Acevedo LD Delgado MR Freedenberg D Garnica A Grebe TA Hernández-Almaguer D Immken L Lalani SR McLean SD Northrup H Scaglia F Strathearn L Trapane P Kang SH Patel A Cheung SW Hastings PJ Stankiewicz P Lupski JR Bi W 《Cell》2011,146(6):889-903
Complex genomic rearrangements (CGRs) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here, we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated, we observed localization and multiple copy number changes including deletions, duplications, and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism's life cycle. 相似文献
55.
The receptor activator of nuclear factor-kappa B ligand-mediated osteoclastogenic pathway is elevated in amelogenin-null mice 总被引:3,自引:0,他引:3
Hatakeyama J Sreenath T Hatakeyama Y Thyagarajan T Shum L Gibson CW Wright JT Kulkarni AB 《The Journal of biological chemistry》2003,278(37):35743-35748
Amelogenins, major components of developing enamel, are predominantly involved in the formation of tooth enamel. Although amelogenins are also implicated in cementogenesis, their precise spatial expression pattern and molecular role are not clearly understood. Here, we report for the first time the expression of two alternate splice forms of amelogenins, M180 and the leucine-rich amelogenin peptide (LRAP), in the periodontal region of mouse tooth roots. Lack of M180 and LRAP mRNA expression correlated with cementum defects observed in the amelogenin-null mice. The cementum defects were characterized by an increased presence of multinucleated cells, osteoclasts, and cementicles. These defects were associated with an increased expression of the receptor activator of the nuclear factor-kappa B ligand (RANKL), a critical regulator of osteoclastogenesis. These findings indicate that the amelogenin splice variants, M180 and LRAP, are critical in preventing abnormal resorption of cementum. 相似文献
56.
Sreenath T Thyagarajan T Hall B Longenecker G D'Souza R Hong S Wright JT MacDougall M Sauk J Kulkarni AB 《The Journal of biological chemistry》2003,278(27):24874-24880
Dentin sialophosphoprotein (Dspp) is mainly expressed in teeth by the odontoblasts and preameloblasts. The Dspp mRNA is translated into a single protein, Dspp, and cleaved into two peptides, dentin sialoprotein and dentin phosphoprotein, that are localized within the dentin matrix. Recently, mutations in this gene were identified in human dentinogenesis imperfecta II (Online Mendelian Inheritance in Man (OMIM) accession number 125490) and in dentin dysplasia II (OMIM accession number 125420) syndromes. Herein, we report the generation of Dspp-null mice that develop tooth defects similar to human dentinogenesis imperfecta III with enlarged pulp chambers, increased width of predentin zone, hypomineralization, and pulp exposure. Electron microscopy revealed an irregular mineralization front and a lack of calcospherites coalescence in the dentin. Interestingly, the levels of biglycan and decorin, small leucine-rich proteoglycans, were increased in the widened predentin zone and in void spaces among the calcospherites in the dentin of null teeth. These enhanced levels correlate well with the defective regions in mineralization and further indicate that these molecules may adversely affect the dentin mineralization process by interfering with coalescence of calcospherites. Overall, our results identify a crucial role for Dspp in orchestrating the events essential during dentin mineralization, including potential regulation of proteoglycan levels. 相似文献
57.
Tyler RC Aceti DJ Bingman CA Cornilescu CC Fox BG Frederick RO Jeon WB Lee MS Newman CS Peterson FC Phillips GN Shahan MN Singh S Song J Sreenath HK Tyler EM Ulrich EL Vinarov DA Vojtik FC Volkman BF Wrobel RL Zhao Q Markley JL 《Proteins》2005,59(3):633-643
We describe a comparative study of protein production from 96 Arabidopsis thaliana open reading frames (ORFs) by cell-based and cell-free protocols. Each target was carried through four pipeline protocols used by the Center for Eukaryotic Structural Genomics (CESG), one for the production of unlabeled protein to be used in crystallization trials and three for the production of 15N-labeled proteins to be analyzed by 1H-15N NMR correlation spectroscopy. Two of the protocols involved Escherichia coli cell-based and two involved wheat germ cell-free technology. The progress of each target through each of the protocols was followed with all failures and successes noted. Failures were of the following types: ORF not cloned, protein not expressed, low protein yield, no cleavage of fusion protein, insoluble protein, protein not purified, NMR sample too dilute. Those targets that reached the goal of analysis by 1H-15N NMR correlation spectroscopy were scored as HSQC+ (protein folded and suitable for NMR structural analysis), HSQC+/- (protein partially disordered or not in a single stable conformational state), HSQC- (protein unfolded, misfolded, or aggregated and thus unsuitable for NMR structural analysis). Targets were also scored as X- for failing to crystallize and X+ for successful crystallization. The results constitute a rich database for understanding differences between targets and protocols. In general, the wheat germ cell-free platform offers the advantage of greater genome coverage for NMR-based structural proteomics whereas the E. coli platform when successful yields more protein, as currently needed for crystallization trials for X-ray structure determination. 相似文献
58.
Richard C. Laughlin Rachel Madera Yair Peres Brian R. Berquist Lihua Wang Sterling Buist Yulia Burakova Sreenath Palle Chungwon J. Chung Max V. Rasmussen Erica Martel David A. Brake John G. Neilan Sara D. Lawhon L. Garry Adams Jishu Shi Sylvain Marcel 《Plant biotechnology journal》2019,17(2):410-420
Classical Swine Fever Virus (CSFV) causes classical swine fever, a highly contagious hemorrhagic fever affecting both feral and domesticated pigs. Outbreaks of CSF in Europe, Asia, Africa and South America had significant adverse impacts on animal health, food security and the pig industry. The disease is generally contained by prevention of exposure through import restrictions (e.g. banning import of live pigs and pork products), localized vaccination programmes and culling of infected or at‐risk animals, often at very high cost. Current CSFV‐modified live virus vaccines are protective, but do not allow differentiation of infected from vaccinated animals (DIVA), a critical aspect of disease surveillance programmes. Alternatively, first‐generation subunit vaccines using the viral protein E2 allow for use of DIVA diagnostic tests, but are slow to induce a protective response, provide limited prevention of vertical transmission and may fail to block viral shedding. CSFV E2 subunit vaccines from a baculovirus/insect cell system have been developed for several vaccination campaigns in Europe and Asia. However, this expression system is considered expensive for a veterinary vaccine and is not ideal for wide‐spread deployment. To address the issues of scalability, cost of production and immunogenicity, we have employed an Agrobacterium‐mediated transient expression platform in Nicotiana benthamiana and formulated the purified antigen in novel oil‐in‐water emulsion adjuvants. We report the manufacturing of adjuvanted, plant‐made CSFV E2 subunit vaccine. The vaccine provided complete protection in challenged pigs, even after single‐dose vaccination, which was accompanied by strong virus neutralization antibody responses. 相似文献
59.
60.
Embryonic or neonatal lethality of mice with targeted disruption of critical genes preclude them from further characterization of specific roles of these genes during postnatal development and aging. In order to study the molecular roles of such genes in teeth, we generated transgenic mouse lines expressing bacteriophage Cre recombinase under the control of the mouse dentin sialophosphoprotein (dspp) gene promoter. The expression of Cre recombinase protein was mainly detected in the nucleus of the odontoblasts. The efficiency of Cre activity was analyzed by crossing the Dspp-Cre mice with ROSA26 reporter (R26R) mice. The offspring with both genotypes have shown specific deletion of intervening sequences flanked by loxP sites upstream of the reporter gene, thereby facilitating the expression of the beta-galactosidase (beta-gal) gene in the teeth. The activity of beta-gal was initially observed in the odontoblasts of 1-day-old mice and increased with tooth development. Almost all of the odontoblasts have shown lacZ activity by 3 weeks of age. We could not detect Cre recombinase activity in any other cells, including ameloblasts. These studies indicate that the Dspp-Cre transgenic mice will be valuable to generate odontoblast-specific gene knockout mice so as to gain insight into the molecular roles of critical genes in the odontoblasts during dentinogenesis. 相似文献