首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2015年   5篇
  2014年   4篇
  2013年   4篇
  2012年   8篇
  2011年   8篇
  2010年   4篇
  2009年   9篇
  2008年   8篇
  2007年   5篇
  2006年   2篇
  2005年   9篇
  2004年   4篇
  2003年   4篇
  2001年   7篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有101条查询结果,搜索用时 20 毫秒
91.
Amelogenin-deficient mice display an amelogenesis imperfecta phenotype.   总被引:8,自引:0,他引:8  
Dental enamel is the hardest tissue in the body and cannot be replaced or repaired, because the enamel secreting cells are lost at tooth eruption. X-linked amelogenesis imperfecta (MIM 301200), a phenotypically diverse hereditary disorder affecting enamel development, is caused by deletions or point mutations in the human X-chromosomal amelogenin gene. Although the precise functions of the amelogenin proteins in enamel formation are not well defined, these proteins constitute 90% of the enamel organic matrix. We have disrupted the amelogenin locus to generate amelogenin null mice, which display distinctly abnormal teeth as early as 2 weeks of age with chalky-white discoloration. Microradiography revealed broken tips of incisors and molars and scanning electron microscopy analysis indicated disorganized hypoplastic enamel. The amelogenin null phenotype reveals that the amelogenins are apparently not required for initiation of mineral crystal formation but rather for the organization of crystal pattern and regulation of enamel thickness. These null mice will be useful for understanding the functions of amelogenin proteins during enamel formation and for developing therapeutic approaches for treating this developmental defect that affects the enamel.  相似文献   
92.
 The most important commercial species of coffee, Coffea arabica, which produces 73% of the world's coffee crop and almost all of the coffee in Latin America, is the only tetraploid (allotetraploid, 2n=4x=44) species known in the genus. High-frequency somatic embryogenesis, plant regeneration and plant recovery were achieved from leaf explants of a mature, elite plant of C. arabica cv. Cauvery (S-4347) using a two-step culture method. To assess the genetic integrity of the nuclear, mitochondrial and chloroplast genomes among the hardened regenerants, we employed multiple DNA markers (RFLP, RAPD, ISSR) for sampling various regions of the genome. Although the nuclear and mitochondrial genomes of the mother plant and five ramets derived from the mother ortet were similar in organization, this was not so in the somatic embryo-derived plants where both nuclear and mitochondrial genomes changed in different, characteristic ways and produced novel genome organizations. A total of 480 genetic loci, based on the data obtained from a total of 16 nuclear, mitochondrial and chloroplast gene probes, in combination with nine restriction enzyme digests, 38 RAPD and 17 SSR primers, were scored in 27 somatic embryo-derived plants and the single control. Among these, 44 loci were observed to be polymorphic. A relatively low level of polymorphism (4.36%) was found in the nuclear genome, while polymorphism in the mitochondrial genome (41%) was much higher. No polymorphism was detected in the chloroplast genome. The polymorphism in the mitochondrial genome was found in only 4 plants. Such selective polymorphism was not true for the nuclear genome. Thus, this in-depth and comprehensive study demonstrates, for the first time, the presence of subtle genetic variability and novel genome organizations in the commercially well-established somatic embryogenesis-derived plants of this important coffee species. Received: 2 July 1999 / Revision received: 1 February 2000 / Accepted: 17 February 2000  相似文献   
93.
Tetrapeptides derived from glycine and beta-alanine were hooked at the C-3beta position of the modified cholic acid to realize novel linear tetrapeptide-linked cholic acid derivatives. All the synthesized compounds were tested against a wide variety of microorganisms (gram-negative bacteria, gram-positive bacteria and fungi) and their cytotoxicity was evaluated against human embryonic kidney (HEK293) and human mammary adenocarcinoma (MCF-7) cell lines. While relatively inactive by themselves, these compounds interact synergistically with antibiotics such as fluconazole and erythromycin to inhibit growth of fungi and bacteria, respectively, at 1-24 microg/mL. The synergistic effect shown by our novel compounds is due to their inherent amphiphilicity. The fractional inhibitory concentrations reported are comparable to those reported for Polymyxin B derivatives.  相似文献   
94.
95.
We isolated a cDNA clone encoding the gerbil AT2 receptor (gAT2) gene from a gerbil adrenal gland cDNA library. The full-length cDNA contains a 1,089-bp open reading frame encoding 363 amino acid residues with 90.9, 96.1, and 95.6% identity with the human (hAT2), rat (rAT2), and mouse AT2 (mAT2) receptors, respectively. There are at least seven nonconserved amino acids in the NH2-terminal domain and in positions Val196, Val217, and Met293, important for angiotensin (ANG) II but not for CGP-42112 binding. Displacement studies in adrenal sections revealed that affinity of the gAT2 receptor was 10-20 times lower for ANG II, ANG III, and PD-123319 than was affinity of the rAT2 receptor. The affinity of each receptor remained the same for CGP-42112. When transfected into COS-7 cells, the gAT2 receptor shows affinity for ANG II that is three times lower than that shown by the hAT2 receptor, whereas affinities for ANG III and the AT2 receptor ligands CGP-42112 and PD-123319 were similar. Autoradiography in sections of the gerbil head showed higher binding in muscles, retina, skin, and molars at embryonic day 19 than at 1 wk of age. In situ hybridization and emulsion autoradiography revealed that at embryonic day 19 the gAT2 receptor mRNA was highly localized to the base of the dental papilla of maxillary and mandibular molars. Our results suggest selective growth-related functions in late gestation and early postnatal periods for the gAT2 receptor and provide an essential basis for future mutagenesis studies to further define structural requirements for agonist binding.  相似文献   
96.
The use of 2-L polyethylene terephthalate beverage bottles as a bacterial culture vessel has been recently introduced as an enabling technology for high-throughput structural biology [Sanville Millard, C. et al., 2003. Protein Express. Purif. 29, 311-320]. In the article following this one [Stols et al., this issue, pp. 95-102], this approach was elaborated for selenomethionine labeling used for multiwavelength anomalous dispersion phasing in the X-ray crystallographic determinations of protein structure. Herein, we report an effective and reproducible schedule for uniform 15N- and 13C-labeling of recombinant proteins in 2-L beverage bottles for structural determination by NMR spectroscopy. As an example, three target proteins selected from Arabidopsis thaliana were expressed in Escherichia coli Rosetta (DE3)/pLysS from a T7-based expression vector, purified, and characterized by electrospray ionization mass spectrometry and NMR analysis by 1H-15N heteronuclear single quantum correlation spectroscopy. The results show that expressions in the unlabeled medium provide a suitable control for estimation of the level of production of the labeled protein. Mass spectral characterizations show that the purified proteins contained a level of isotopic incorporation equivalent to the isotopically labeled materials initially present in the growth medium, while NMR analysis of the [U-15N]-labeled proteins provided a convenient method to assess the solution state properties of the target protein prior to production of a more costly double-labeled sample.  相似文献   
97.
In this work, we search for coordination as an organizing principle in a complex signaling system using a multilevel hierarchical paradigm. The objective is to explain the underlying mechanism of Interferon (IFNγ) induced JAK-STAT (specifically JAK1/JAK2-STAT1) pathway behavior. Starting with a mathematical model of the pathway from the literature, we modularize the system using biological knowledge via principles of biochemical cohesion, biological significance, and functionality. The modularized system is then used as a basis for in silico inhibition, knockdown/deletion and perturbation experiments to discover a coordination mechanism. Our analysis shows that a module representing the SOCS1 complex can be identified as the coordinator. Analysis of the coordinator can then be used for the selection of biological experiments for the discovery of ‘soft’ molecular drug targets, that could lead to the development of improved therapeutics. The coordinator identified is also being investigated to determine its relationship to pathological conditions.  相似文献   
98.
This work describes ethanol production from alfalfa fiber using separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) with and without liquid hot water (LHW) pretreatment. Candida shehatae FPL-702 produced 5 and 6.4 g/l ethanol with a yield of 0.25 and 0.16 g ethanol/g sugar respectively by SHF and SSF from alfalfa fiber without pretreatment. With LHW pretreatment using SSF, C. shehatae FPL-702 produced 18.0 g/l ethanol, a yield of 0.45 g ethanol/g sugar from cellulosic solids or ‘raffinate’. Using SHF, it produced 9.6 g/l ethanol, a yield of 0.47 g ethanol/g sugar from raffinate. However, the soluble extract fraction containing hemicelluloses was poorly fermented in both SHF and SSF due to the presence of inhibitors. Addition of dilute acid during LHW pretreatment of alfalfa fiber resulted in fractions that were poorly saccharified and fermented. These results show that unpretreated alfalfa fiber produced a lower ethanol yield. Although LHW pretreatment can increase ethanol production from raffinate fiber fractions, it does not increase production from the hemicellulosic and pectin fractions.  相似文献   
99.
Summary These studies examined several process variables important in scaling up the fermentation of xylose by Candida shehatae. Inoculum age and cell density were particularly influential. Young (24-h) inocula fermented xylose to ethanol two to three times as fast as older (48- or 72-h) inocula. With all three inocula ages, the initial fermentation rates were essentially linear with cell density, up to 4 g dry wt cells L-1. Above that cell density, the ethanol production rate appeared to be oxygen limited, particularly with 24-h old cells. Aeration also played a role in xylose utilization. The fermentation proceeded under both aerobic and anaerobic conditions, but xylose was not completely utilized anaerobically. With aeration, 25% more ethanol was formed in about one third the time than without aeration. Ethanol yields were similar under the two conditions. Cell growth on xylose was observed in the absence of oxygen. Cells went through essentially one doubling in 24 h. Based on the sugar consumed, a Y ATP of 9.9 was obtained. Slow continuous feeding of glucose significantly increased the xylose utilization rate.Maintained in cooperation with the University of Wisconsin, Madison, Wisconsin, USA  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号