首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   17篇
  285篇
  2023年   3篇
  2022年   4篇
  2021年   13篇
  2020年   2篇
  2019年   7篇
  2018年   4篇
  2017年   8篇
  2016年   10篇
  2015年   15篇
  2014年   18篇
  2013年   35篇
  2012年   23篇
  2011年   20篇
  2010年   12篇
  2009年   13篇
  2008年   13篇
  2007年   13篇
  2006年   12篇
  2005年   10篇
  2004年   9篇
  2003年   7篇
  2002年   5篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1990年   3篇
  1989年   3篇
  1984年   1篇
  1981年   3篇
  1979年   3篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
  1966年   1篇
  1961年   1篇
  1956年   1篇
排序方式: 共有285条查询结果,搜索用时 0 毫秒
91.
Degradation of Tectilon Yellow 2G (TY2G), an azo dye has been studied by hybrid technique involving pretreatment by sonochemical method and further biological treatment by Pseudomonas putida mutant. Pretreatment experiments were carried out by sonolysis of the dye solution at different concentrations (100-1000 mg/L). Wild type Gram-negative P. putida species isolated from the textile effluent contaminated soil, which was found to be effective towards dye degradation, has been acclimatized so as to consume TY2G as the sole source of nutrition. Mutant strain was obtained from the acclimatized species by random mutagenesis using the chemical mutagen ethidium bromide for various time intervals (6-30 min). The optimum mutagenesis exposure time for obtaining the most efficient species for dye degradation was found to be 18 min. An efficient mutant strain P. putida ACT 1 has been isolated and was used for growth experiments. The mutant strain showed a better growth compared to the wild strain. The substrate utilization kinetics has been modeled using Monod and Haldane model equations of which the Haldane model provided a better fit. The enzyme kinetics of the mutant and wild species was obtained using Michaelis-Menten equation. The mutated species showed better enzyme kinetics towards the degradation of TY2G.  相似文献   
92.
Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring 1H-15N dipolar couplings (DC) and 15N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles’ heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([1H,15N]-SE-PISEMA-PDSD). The incorporation of 2D 15N/15N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the 15N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers.  相似文献   
93.
A Scopulariopsis brevicaulis poultry farm isolate was chosen to study factors influencing keratinase production. The parameters were optimized by factorial design. The highest enzyme production by this fungus was obtained at pH 7.5, a temperature of 30 degrees C and a growth period of 5 weeks. The production of the enzyme was enhanced when the culture medium was supplemented with glucose (1%), sodium nitrate (2%), feather (1.5%) and CaCl(2) (1 mM). According to the responses from the experimental design, the effects of each variable were calculated, and the interactions between them were determined. The experimental values were found to be in accordance with the predicted values, the correlation coefficient is 0.9978.  相似文献   
94.
Metabolic changes that contribute to differentiation are not well understood. Overwhelming evidence shows the critical role of glycolytic enzyme pyruvate kinase (PK) in directing metabolism of proliferating cells. However, its role in metabolism of differentiating cells is unclear. Here we studied the role of PK in phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic differentiation in human leukemia K562 cells. We observed that PMA treatment decreased cancer-type anabolic metabolism but increased ATP production, along with up-regulated expression of two PK isoforms (PKM2 and PKR) in an ERK2-dependent manner. Interestingly, silencing of PK (PKM2 and PKR) inhibited PMA-induced megakaryocytic differentiation, as revealed by decreased expression of megakaryocytic differentiation marker CD61 and cell cycle behavior. Further, PMA-induced ATP production reduced greatly upon PK silencing, suggesting that PK is required for ATP synthesis. In addition to metabolic effects, PMA treatment also translocated PKM2, but not PKR, into nucleus. ERK1/2 knockdowns independently and together suggested the role of ERK2 in the up-regulation of both the isoforms of PK, proposing a role of ERK2-PK isoform axis in differentiation. Collectively, our findings unravel ERK2 guided PK-dependent metabolic changes during PMA induction, which are important in megakaryocytic differentiation.  相似文献   
95.
One of the most common cancers worldwide is oral squamous cell carcinoma (OSCC), which is associated with a significant death rate and has been linked to several risk factors. Notably, failure to detect these neoplasms at an early stage represents a fundamental barrier to improving the survival and quality of life of OSCC patients. In the present study, serum samples from OSCC patients (n = 25) and healthy controls (n = 25) were subjected to two-dimensional gel electrophoresis (2-DE) and silver staining in order to identify biomarkers that might allow early diagnosis. In this regard, 2-DE spots corresponding to various up- and down-regulated proteins were sequenced via high-resolution MALDI-TOF mass spectrometry and analyzed using the MASCOT database. We identified the following differentially expressed host-specific proteins within sera from OSCC patients: leucine-rich α2-glycoprotein (LRG), alpha-1-B-glycoprotein (ABG), clusterin (CLU), PRO2044, haptoglobin (HAP), complement C3c (C3), proapolipoprotein A1 (proapo-A1), and retinol-binding protein 4 precursor (RBP4). Moreover, five non-host factors were detected, including bacterial antigens from Acinetobacter lwoffii, Burkholderia multivorans, Myxococcus xanthus, Laribacter hongkongensis, and Streptococcus salivarius. Subsequently, we analyzed the immunogenicity of these proteins using pooled sera from OSCC patients. In this regard, five of these candidate biomarkers were found to be immunoreactive: CLU, HAP, C3, proapo-A1 and RBP4. Taken together, our immunoproteomics approach has identified various serum biomarkers that could facilitate the development of early diagnostic tools for OSCC.  相似文献   
96.
Activation induced deaminase (AID) deaminates cytosine to uracil, which is required for a functional humoral immune system. Previous work demonstrated, that AID also deaminates 5-methylcytosine (5 mC). Recently, a novel vertebrate modification (5-hydroxymethylcytosine - 5 hmC) has been implicated in functioning in epigenetic reprogramming, yet no molecular pathway explaining the removal of 5 hmC has been identified. AID has been suggested to deaminate 5 hmC, with the 5 hmU product being repaired by base excision repair pathways back to cytosine. Here we demonstrate that AID's enzymatic activity is inversely proportional to the electron cloud size of C5-cytosine - H > F > methyl > hydroxymethyl. This makes AID an unlikely candidate to be part of 5 hmC removal.  相似文献   
97.

Background

Delayed or missed diagnosis of TB continues to fuel the global TB epidemic, especially in resource limited settings. Use of serology for the diagnosis of tuberculosis, commonly used in India, is another factor. In the present study a commercially available serodiagnostic assay was assessed for its diagnostic value in combination with smear, culture and clinical manifestations.

Methodology/Principal Findings

A total of 2300 subjects were recruited for the study, but 1041 subjects were excluded for various reasons. Thus 1259 subjects were included in the study of which 470 were pulmonary tuberculosis cases (440 of 470 were culture-positive) and 789 were their asymptomatic contacts. A house-to-house survey method was used. Blood samples were tested for IgM, IgA, and IgG antibodies using the Pathozyme Myco M (IgM), Myco A (IgA) and Myco G (IgG) enzyme immunoassay (EIA). Out of 470 PTB cases, BCG scar was positive in 82.34%. The Mantoux test and smear positivity rates in PTB cases were 94.3% (430/456), and 65.32% (307/470), respectively. Among the asymptomatic contacts, BCG scar was positive in 95.3% and Mantoux test was positive in 80.66% (442/548) contacts. No contact was found falsely smear positive. The sensitivity of IgM, IgA, and IgG EIA tests was 48.7%, 25.7% and 24.4%, respectively, while the specificity was 71.5%, 80.5%, 76.6%, respectively. Performance of EIAs was not affected by the previous BCG vaccination. However, prior BCG vaccination was statistically significantly (p = 0.005) associated with Mantoux test positivity in PTB cases but not in contacts (p = 0.127). The agreement between serology and Mantoux test was not significant.

Conclusion

The commercial serological test evaluated showed poor sensitivity and specificity and suggests no utility for detection of pulmonary tuberculosis.  相似文献   
98.
Bacterial artificial chromosomes (BACs) are used in genomic variation studies due to their capacity to carry a large insert, their high clonal stability, low rate of chimerism and ease of manipulation. In the present study, an attempt was made to create the first genomic BAC library of an anonymous Indian male (IMBL4) consisting of 100,224 clones covering the human genome more than three times. Restriction mapping of 255 BAC clones by pulse field gel electrophoresis confirmed an average insert size of 120 kb. The library was screened by PCR using SHANK3 (SH3 and multiple ankyrin repeat domains 3) and OLFM3 (olfactomedin 3) specific primers. A selection of clones was analyzed by fluorescent in situ hybridization (FISH) and sequencing. Fine mapping of copy number variable regions by array based comparative genomic hybridization identified 467 CNVRs in the IMBL4 genome. The IMBL4 BAC library represents the first cataloged Indian genome resource for applications in basic and clinical research.  相似文献   
99.
A loop (residues 794–803) at the active site of β-galactosidase (Escherichia coli) opens and closes during catalysis. The α and β carbons of Ser-796 form a hydrophobic connection to Phe-601 when the loop is closed while a connection via two H-bonds with the Ser hydroxyl occurs with the loop open. β-Galactosidases with substitutions for Ser-796 were investigated. Replacement by Ala strongly stabilizes the closed conformation because of greater hydrophobicity and loss of H-bonding ability while replacement with Thr stabilizes the open form through hydrophobic interactions with its methyl group. Upon substitution with Asp much of the defined loop structure is lost. The different open-closed equilibria cause differences in the stabilities of the enzyme · substrate and enzyme · transition state complexes and of the covalent intermediate that affect the activation thermodynamics. With Ala, large changes of both the galactosylation (k2) and degalactosylation (k3) rates occur. With Thr and Asp, the k2 and k3 were not changed as much but large ΔH3 and TΔS3 changes showed that the substitutions caused mechanistic changes. Overall, the hydrophobic and H-bonding properties of Ser-796 result in interactions strong enough to stabilize the open or closed conformations of the loop but weak enough to allow loop movement during the reaction.  相似文献   
100.
The mechanisms underlying antimicrobial and anti-endotoxic effects were investigated for a series of structurally related peptides derived from the C-terminal region of S1 peptidases. For this purpose, results on bacterial killing were compared to those on peptide-induced liposome leakage, and to ellipsometry and dual polarization interferometry results on peptide binding to, and disordering of, supported lipid bilayers. Furthermore, the ability of these peptides to block endotoxic effects caused by bacterial lipopolysaccharide (LPS), monitored through NO production in macrophages, was compared to the binding of these peptides to LPS, and to secondary structure formation in the peptide/LPS complex. Bacteria killing, occurring through peptide-induced membrane lysis, was found to correlate with liposome rupture, and with the extent of peptide binding to the lipid membrane, no adsorption threshold for peptide insertion being observed. Membrane and LPS binding was found to depend on peptide net charge, illustrated by LPS binding increasing with increasing peptide charge, and peptides with net negative charge being unable to lyse membranes, kill bacteria, and block LPS-induced endotoxic effect. These effects were, however, also influenced by peptide hydrophobicity. LPS binding was furthermore demonstrated to be necessary, but not sufficient, for anti-endotoxic effect of these peptides. Circular dichroism spectroscopy showed that pronounced helix formation occurs in peptide/LPS complexes for all peptides displaying anti-endotoxic effect, hence potentially linked to this functionality. Similarly, ordered secondary structure formation was correlated to membrane binding, lysis, and antimicrobial activity of these peptides. Finally, preferential binding of these peptides to LPS over the lipid membrane was demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号