首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   17篇
  2023年   3篇
  2022年   4篇
  2021年   13篇
  2020年   2篇
  2019年   7篇
  2018年   4篇
  2017年   8篇
  2016年   10篇
  2015年   15篇
  2014年   18篇
  2013年   35篇
  2012年   23篇
  2011年   20篇
  2010年   12篇
  2009年   13篇
  2008年   13篇
  2007年   13篇
  2006年   12篇
  2005年   10篇
  2004年   9篇
  2003年   7篇
  2002年   5篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1990年   3篇
  1989年   3篇
  1984年   1篇
  1981年   3篇
  1979年   3篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
  1966年   1篇
  1961年   1篇
  1956年   1篇
排序方式: 共有285条查询结果,搜索用时 31 毫秒
61.
62.
63.
Reactome http://www.reactome.org, an online curated resource for human pathway data, provides infrastructure for computation across the biologic reaction network. We use Reactome to infer equivalent reactions in multiple nonhuman species, and present data on the reliability of these inferred reactions for the distantly related eukaryote Saccharomyces cerevisiae. Finally, we describe the use of Reactome both as a learning resource and as a computational tool to aid in the interpretation of microarrays and similar large-scale datasets.  相似文献   
64.
Host-to-host transmission in most Salmonella serovars occurs primarily via the fecal-oral route. Salmonella enterica serovar Typhi is a human host-adapted pathogen and some S. Typhi patients become asymptomatic carriers. These individuals excrete large numbers of the bacteria in their feces and transmit the pathogen by contaminating water or food sources. The carrier state has also been described in livestock animals and is responsible for food-borne epidemics. Identification and treatment of carriers are crucial for the control of disease outbreaks. In this review, we describe recent advances in molecular profiling of human carriers and the use of animal models to identify potential host and bacterial genes involved in the establishment of the carrier state.  相似文献   
65.
Host-adapted strains of Salmonella enterica cause systemic infections and have the ability to persist systemically for long periods of time and pose significant public-health problems. Multidrug-resistant S. enterica serovar Typhi (S. Typhi) and nontyphoidal Salmonella (NTS) are on the increase and are often associated with HIV infection. Chronically infected hosts are often asymptomatic and transmit disease to na?ve hosts via fecal shedding of bacteria, thereby serving as a critical reservoir for disease. Salmonella utilizes multiple ways to evade and modulate host innate and adaptive immune responses in order to persist in the presence of a robust immune response. Survival in macrophages and modulation of immune cells migration allow Salmonella to evade various immune responses. The ability of Salmonella to persist depends on a balance between immune responses that lead to the clearance of the pathogen and avoidance of damage to host tissues.  相似文献   
66.
Aims: Polymerase chain reaction (PCR) is the most rapid and sensitive method for diagnosing mycobacterial infections and identifying the aetiological Mycobacterial species in order to administer the appropriate therapy and for better patient management. Methods and Results: Two hundred and thirty‐five samples from 145 clinically suspected cases of tuberculosis were processed for the detection of Mycobacterial infections by ZN (Ziehl Neelsen) smear examination, L‐J & BACTECTM MGIT‐960 culture and multiplex PCR tests. The multiplex PCR comprised of genus‐specific primers targeting hsp65 gene, Mycobacterium tuberculosis complex‐specific primer targeting cfp10 (Rv3875, esxB) region and Mycobacterium avium complex‐specific primer pairs targeting 16S–23S Internal Transcribed Spacer sequences. The multiplex PCR developed had an analytical sensitivity of 10 fg (3–4 cells) of mycobacterial DNA. The multiplex PCR test showed the highest (77·24%) detection rate, while ZN smear examination had the lowest (20%) detection rate, which was bettered by L‐J culture (34·4%) and BACTECTM MGIT‐960 culture (50·34%) methods. The mean isolation time for M. tuberculosis was 19·03 days in L‐J culture and 8·7 days in BACTECTM MGIT‐960 culture. Using the multiplex PCR, we could establish M. tuberculosis + M. avium co‐infection in 1·3% HIV‐negative and 2·9% HIV‐positive patients. The multiplex PCR was also highly useful in diagnosing mycobacteraemia in 38·09% HIV‐positive and 15·38% HIV‐negative cases. Conclusions: The developed in‐house multiplex PCR could identify and differentiate the M. tuberculosis and M. avium complexes from other Mycobacterial species directly from clinical specimens. Significance and Impact of the Study: The triplex PCR developed by us could be used to detect and differentiate M. tuberculosis, M. avium and other mycobacteria in a single reaction tube.  相似文献   
67.
68.
Host-adapted strains of Salmonella enterica cause systemic infections and have the ability to persist systemically for long periods of time despite the presence of a robust immune response. Chronically infected hosts are asymptomatic and transmit disease to naïve hosts via fecal shedding of bacteria, thereby serving as a critical reservoir for disease. We show that the bacterial effector protein SseI (also called SrfH), which is translocated into host cells by the Salmonella Pathogenicity Island 2 (SPI2) type III secretion system (T3SS), is required for Salmonella typhimurium to maintain a long-term chronic systemic infection in mice. SseI inhibits normal cell migration of primary macrophages and dendritic cells (DC) in vitro, and such inhibition requires the host factor IQ motif containing GTPase activating protein 1 (IQGAP1), an important regulator of cell migration. SseI binds directly to IQGAP1 and co-localizes with this factor at the cell periphery. The C-terminal domain of SseI is similar to PMT/ToxA, a bacterial toxin that contains a cysteine residue (C1165) that is critical for activity. Mutation of the corresponding residue in SseI (C178A) eliminates SseI function in vitro and in vivo, but not binding to IQGAP1. In addition, infection with wild-type (WT) S. typhimurium suppressed DC migration to the spleen in vivo in an SseI-dependent manner. Correspondingly, examination of spleens from mice infected with WT S. typhimurium revealed fewer DC and CD4+ T lymphocytes compared to mice infected with ΔsseI S. typhimurium. Taken together, our results demonstrate that SseI inhibits normal host cell migration, which ultimately counteracts the ability of the host to clear systemic bacteria.  相似文献   
69.
In the present study, we investigated the cardiomyogenic potential of human umbilical cord blood (hUCB)-derived stem cells and whether stem cell treatment repairs the pathological hypertrophy induced by doxorubicin (DOX) in cultured neonatal rat cardiomyocytes (NRCM) and in mouse hearts. hUCB, which were labeled with cell tracker dye, were co-cultured with isolated NRCM in vitro. After 48 h of incubation, the red stained hUCB cells (30%) contracted rhythmically and synchronously (physical examination). These differentiated hUCB also expressed cardiac specific α-actinin and showed diffused expression of connexin 43 and N-cadherin, thereby suggesting a tight electrical coupling among hUCB cells and myocytes. When co-cultured, hUCB also reversed the pathological effects induced by DOX in NRCM and in mice as seen by RT-PCR, immunoblot analysis and immunocytochemistry. hUCB migrated and integrated into the hearts of mice that were treated with DOX after intravenous injection and reversed the expression of pathological hypertrophic markers induced by DOX in mice. Further, we observed a shift from pathological hypertrophy towards physiological hypertrophy by hUCB in DOX-challenged mice. hUCB treatment in mice decreased DOX-induced increase of heart weight to body mass ratio and fibrosis. Taken together, these findings suggest the potential therapeutic use of hUCB in reversing heart failure conditions.  相似文献   
70.

Background

Glioma is the most commonly diagnosed primary brain tumor and is characterized by invasive and infiltrative behavior. uPAR and cathepsin B are known to be overexpressed in high-grade gliomas and are strongly correlated with invasive cancer phenotypes.

Methodology/Principal Findings

In the present study, we observed that simultaneous downregulation of uPAR and cathepsin B induces upregulation of some pro-apoptotic genes and suppression of anti-apoptotic genes in human glioma cells. uPAR and cathepsin B (pCU)-downregulated cells exhibited decreases in the Bcl-2/Bax ratio and initiated the collapse of mitochondrial membrane potential. We also observed that the broad caspase inhibitor, Z-Asp-2, 6-dichlorobenzoylmethylketone rescued pCU-induced apoptosis in U251 cells but not in 5310 cells. Immunoblot analysis of caspase-9 immunoprecipitates for Apaf-1 showed that uPAR and cathepsin B knockdown activated apoptosome complex formation in U251 cells. Downregulation of uPAR and cathepsin B also retarded nuclear translocation and interfered with DNA binding activity of CREB in both U251 and 5310 cells. Further western blotting analysis demonstrated that downregulation of uPAR and cathepsin B significantly decreased expression of the signaling molecules p-PDGFR-β, p-PI3K and p-Akt. An increase in the number of TUNEL-positive cells, increased Bax expression, and decreased Bcl-2 expression in nude mice brain tumor sections and brain tissue lysates confirm our in vitro results.

Conclusions/Significance

In conclusion, RNAi-mediated downregulation of uPAR and cathepsin B initiates caspase-dependent mitochondrial apoptosis in U251 cells and caspase-independent mitochondrial apoptosis in 5310 cells. Thus, targeting uPAR and cathepsin B-mediated signaling using siRNA may serve as a novel therapeutic strategy for the treatment of gliomas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号