首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   634篇
  免费   45篇
  679篇
  2023年   10篇
  2022年   11篇
  2021年   21篇
  2020年   8篇
  2019年   12篇
  2018年   15篇
  2017年   8篇
  2016年   11篇
  2015年   19篇
  2014年   34篇
  2013年   35篇
  2012年   43篇
  2011年   50篇
  2010年   15篇
  2009年   21篇
  2008年   39篇
  2007年   33篇
  2006年   23篇
  2005年   24篇
  2004年   38篇
  2003年   28篇
  2002年   22篇
  2001年   23篇
  2000年   18篇
  1999年   19篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1992年   10篇
  1991年   5篇
  1990年   6篇
  1989年   7篇
  1988年   4篇
  1987年   7篇
  1986年   5篇
  1985年   5篇
  1983年   2篇
  1976年   2篇
  1973年   2篇
  1970年   2篇
  1968年   1篇
  1966年   3篇
  1959年   1篇
  1953年   1篇
  1950年   1篇
  1937年   1篇
  1936年   2篇
  1935年   4篇
排序方式: 共有679条查询结果,搜索用时 15 毫秒
1.
2.
The dimethyl ester of bovine pancreatic ribonuclease-A (dimethyl RNAase-A), the initial product of esterification of RNAase-A in anhydrous methanolic HCl, was isolated in a homogeneous form. The two carboxy functions esterified in this derivative are those of glutamic acid-49 and aspartic acid-53. There were no changes in the u.v.-absorption spectral characteristics, the accessibility of the methionine residues, the resistance of the protein to proteolysis by trypsin and the antigenic behaviour of RNAase-A as a result of the esterification of these two carboxy groups. Dimethyl RNAase-A exhibited only 65% of the specific activity of RNAase-A, but still had the same Km value for both RNA and 2′:3′-cyclic CMP. However, the Vmax. was decreased by about 35%. On careful hydrolysis of the methyl ester groups at pH9.5, dimethyl RNAase-A was converted back into RNAase-A. Limited proteolysis of dimethyl RNAase-A by subtilisin resulted in the formation of an active RNAase-S-type derivative, namely dimethyl RNAase-S, which was chromatographically distinct from dimethyl RNAase-A and had very nearly the same enzymic activity as dimethyl RNAase-A. Fractionation of dimethyl RNAase-S by trichloroacetic acid yielded dimethyl RNAase-S-protein and dimethyl RNAase-S-peptide, both of which were inactive by themselves but regenerated dimethyl RNAase-S when mixed together. Dimethyl RNAase-A-peptide was identical with RNAase-S-peptide. RNAase-S-protein could be generated from dimethyl RNAase-S-protein by careful hydrolysis of the methyl ester groups at pH9.5. The interaction of dimethyl RNAase-S-protein with RNAase-S-peptide appears to be about 4-fold weaker than that between the RNAase-S-protein and RNAase-S-peptide. Conceivably, the binding of the S-peptide `tail' of dimethyl RNAase-A with the remainder of the molecule is similarly weaker than that in RNAase-A, and this brings about subtle changes in the geometrical orientation of the active-site amino acid residues of these modified methyl ester derivatives. It is suggested that these changes could be responsible for the generation of the catalytically less-efficient RNAase-A and RNAase-S molecules (dimethyl RNAase-A and dimethyl RNAase-S respectively).  相似文献   
3.
Chronic topical cases of Sporotrichosis, a chronic fungal infection caused by the ubiquitously present cryptic members of the Sporothrix species complex, are treated with oral administrations of itraconazole. However, severe pulmonary or disseminated cases require repeated intra-venous doses of amphotericin B or even surgical debridement of the infected tissue. The unavoidable adverse side-effects of the current treatments, besides the growing drug resistance among Sporothrix genus, demands exploration of alternative therapeutic options. Medicinal herbs, due to their multi-targeting capacity, are gaining popularity amidst the rising antimicrobial recalcitrance. Withania somnifera is a well-known medicinal herb with reported antifungal activities against several pathogenic fungal genera. In this study, the antifungal effect of the whole plant extract of W. somnifera (WSWE) has been explored for the first time, against an itraconazole resistant strain of S. globosa. WSWE treatment inhibited S. globosa yeast form growth in a dose-dependent manner, with IC50 of 1.40 mg/ml. Minimum fungicidal concentration (MFC) was found to be 50 mg/ml. Sorbitol protection and ergosterol binding assays, revealed that anti-sporotrichotic effects of WSWE correlated well with the destabilization of the fungal cell wall and cell membrane. This observation was validated through dose-dependent decrease in overall ergosterol contents in WSWE-treated S. globosa cells. Compositional analysis of WSWE through high performance liquid chromatography (HPLC) exhibited the presence of several anti-microbial phytochemicals like withanone, withaferin A, withanolides A and B, and withanoside IV and V. Withanone and withaferin A, purified from WSWE, were 10–20 folds more potent against S. globosa than WSWE, thus, suggesting to be the major phytocompounds responsible for the observed anti-sporotrichotic activity. In conclusion, this study has demonstrated the anti-sporotrichotic property of the whole plant extract of W. somnifera against S. globosa that could be further explored for the development of a natural antifungal agent against chronic Sporotrichosis.  相似文献   
4.

Background

Genotyping by sequencing, a new low-cost, high-throughput sequencing technology was used to genotype 2,815 maize inbred accessions, preserved mostly at the National Plant Germplasm System in the USA. The collection includes inbred lines from breeding programs all over the world.

Results

The method produced 681,257 single-nucleotide polymorphism (SNP) markers distributed across the entire genome, with the ability to detect rare alleles at high confidence levels. More than half of the SNPs in the collection are rare. Although most rare alleles have been incorporated into public temperate breeding programs, only a modest amount of the available diversity is present in the commercial germplasm. Analysis of genetic distances shows population stratification, including a small number of large clusters centered on key lines. Nevertheless, an average fixation index of 0.06 indicates moderate differentiation between the three major maize subpopulations. Linkage disequilibrium (LD) decays very rapidly, but the extent of LD is highly dependent on the particular group of germplasm and region of the genome. The utility of these data for performing genome-wide association studies was tested with two simply inherited traits and one complex trait. We identified trait associations at SNPs very close to known candidate genes for kernel color, sweet corn, and flowering time; however, results suggest that more SNPs are needed to better explore the genetic architecture of complex traits.

Conclusions

The genotypic information described here allows this publicly available panel to be exploited by researchers facing the challenges of sustainable agriculture through better knowledge of the nature of genetic diversity.  相似文献   
5.
Scramblases are a family of single-pass plasma membrane proteins, identified by their purported ability to scramble phospholipids across the two layers of plasma membrane isolated from platelets and red blood cells. However, their true in vivo role has yet to be elucidated. We report the generation and isolation of null mutants of two Scramblases identified in Drosophila melanogaster. We demonstrate that flies lacking either or both of these Scramblases are not compromised in vivo in processes requiring scrambling of phospholipids. Instead, we show that D. melanogaster lacking both Scramblases have more vesicles and display enhanced recruitment from a reserve pool of vesicles and increased neurotransmitter secretion at the larval neuromuscular synapses. These defects are corrected by the introduction of a genomic copy of the Scramb 1 gene. The lack of phenotypes related to failure of scrambling and the neurophysiological analysis lead us to propose that Scramblases play a modulatory role in the process of neurotransmission.  相似文献   
6.
7.
Beta toxin from Clostridium perfringens after being secreted in gut is capable of causing necrotic enteritis in humans and several other animal species and does not respond to routinely used antibiotics. Therefore, there is a need to design an effective inhibitor for the Clostridium perfringens beta toxin (CPB) using cutting edge drug discovery technologies. Hence, potential CPB inhibitors were identified using computer aided screening of compounds from the ZINC database. Further, we document the molecular docking analysis of Clostridium perfringens beta toxin model (that revealed 4 binding pockets, A-D) with the identified potential inhibitors. We show that ZINC291192 [N-[(1-methylindol-3-yl) methyl eneamino]-7,10-dioxabicyclo[4.4.0]deca-2,4,11-triene-8- carboxamide] has optimal binding features with calculated binding energy of -10.38 kcal/mol and inhibition constant of 24.76 nM for further consideration.  相似文献   
8.
Recent reports highlight the severity and the morbidity of disease caused by the long neglected malaria parasite Plasmodium vivax. Due to inherent difficulties in the laboratory-propagation of P. vivax, the biology of this parasite has not been adequately explored. While the proteome of P. falciparum, the causative agent of cerebral malaria, has been extensively explored from several sources, there is limited information on the proteome of P. vivax. We have, for the first time, examined the proteome of P. vivax isolated directly from patients without adaptation to laboratory conditions. We have identified 153 proteins from clinical P. vivax, majority of which do not show homology to any previously known gene products. We also report 29 new proteins that were found to be expressed in P. vivax for the first time. In addition, several proteins previously implicated as anti-malarial targets, were also found in our analysis. Most importantly, we found several unique proteins expressed by P. vivax.This study is an important step in providing insight into physiology of the parasite under clinical settings.  相似文献   
9.
10.
Human placental RNase inhibitor (hRI), a leucine-rich repeat protein, binds the blood vessel-inducing protein human angiogenin (Ang) with extraordinary affinity (Ki <1 fM). Here we report a 2.0 A resolution crystal structure for the hRI-Ang complex that, together with extensive mutagenesis data from earlier studies, reveals the molecular features of this tight interaction. The hRI-Ang binding interface is large and encompasses 26 residues from hRI and 24 from Ang, recruited from multiple domains of both proteins. However, a substantial fraction of the energetically important contacts involve only a single region of each: the C-terminal segment 434-460 of hRI and the ribonucleolytic active centre of Ang, most notably the catalytic residue Lys40. Although the overall docking of Ang resembles that observed for RNase A in the crystal structure of its complex with the porcine RNase inhibitor, the vast majority of the interactions in the two complexes are distinctive, indicating that the broad specificity of the inhibitor for pancreatic RNase superfamily proteins is based largely on its capacity to recognize features unique to each of them. The implications of these findings for the development of small, hRI-based inhibitors of Ang for therapeutic use are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号