首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   24篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   10篇
  2014年   17篇
  2013年   21篇
  2012年   26篇
  2011年   28篇
  2010年   18篇
  2009年   15篇
  2008年   19篇
  2007年   13篇
  2006年   21篇
  2005年   19篇
  2004年   11篇
  2003年   15篇
  2002年   10篇
  2001年   4篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有304条查询结果,搜索用时 671 毫秒
121.
Serglycin is a proteoglycan expressed by some malignant cells. It promotes metastasis and protects some tumor cells from complement system attack. In the present study, we show for the first time the in situ expression of serglycin by breast cancer cells by immunohistochemistry in patients’ material. Moreover, we demonstrate high expression and constitutive secretion of serglycin in the aggressive MDA-MB-231 breast cancer cell line. Serglycin exhibited a strong cytoplasmic staining in these cells, observable at the cell periphery in a thread of filaments near the cell membrane, but also in filopodia-like structures. Serglycin was purified from conditioned medium of MDA-MB-231 cells, and represented the major proteoglycan secreted by these cells, having a molecular size of ∼250 kDa and carrying chondroitin sulfate side chains, mainly composed of 4-sulfated (∼87%), 6-sulfated (∼10%) and non-sulfated (∼3%) disaccharides. Purified serglycin inhibited early steps of both the classical and the lectin pathways of complement by binding to C1q and mannose-binding lectin. Stable expression of serglycin in less aggressive MCF-7 breast cancer cells induced their proliferation, anchorage-independent growth, migration and invasion. Interestingly, over-expression of serglycin lacking the glycosaminoglycan attachment sites failed to promote these cellular functions, suggesting that glycanation of serglycin is a pre-requisite for its oncogenic properties. Our findings suggest that serglycin promotes a more aggressive cancer cell phenotype and may protect breast cancer cells from complement attack supporting their survival and expansion.  相似文献   
122.
123.
Much physiological and behavioral evidence has been provided suggesting that insect odorant-binding proteins (OBPs) are indispensable for odorant recognition and thus are appealing targets for structure-based discovery and design of novel host-seeking disruptors. Despite the fact that more than 60 putative OBP-encoding genes have been identified in the malaria vector Anopheles gambiae, the crystal structures of only six of them are known. It is therefore clear that OBP structure determination constitutes the bottleneck for structure-based approaches to mosquito repellent/attractant discovery. Here, we describe the three-dimensional structure of an A. gambiae “Plus-C” group OBP (AgamOBP48), which exhibits the second highest expression levels in female antennae. This structure represents the first example of a three-dimensional domain-swapped dimer in dipteran species. A combined binding site is formed at the dimer interface by equal contribution of each monomer. Structural comparisons with the monomeric AgamOBP47 revealed that the major structural difference between the two Plus-C proteins localizes in their N- and C-terminal regions, and their concerted conformational change may account for monomer-swapped dimer conversion and furthermore the formation of novel binding pockets. Using a combination of gel filtration chromatography, differential scanning calorimetry, and analytical ultracentrifugation, we demonstrate the AgamOBP48 dimerization in solution. Eventually, molecular modeling calculations were used to predict the binding mode of the most potent synthetic ligand of AgamOBP48 known so far, discovered by ligand- and structure-based virtual screening. The structure-aided identification of multiple OBP binders represents a powerful tool to be employed in the effort to control transmission of the vector-borne diseases.  相似文献   
124.
The multifunctional protein nucleolin (NCL) is overexpressed on the surface of activated endothelial and tumor cells and mediates the stimulatory actions of several angiogenic growth factors, such as pleiotrophin (PTN). Because αvβ3 integrin is also required for PTN-induced cell migration, the aim of the present work was to study the interplay between NCL and αvβ3 by using biochemical, immunofluorescence, and proximity ligation assays in cells with genetically altered expression of the studied molecules. Interestingly, cell surface NCL localization was detected only in cells expressing αvβ3 and depended on the phosphorylation of β3 at Tyr773 through receptor protein-tyrosine phosphatase β/ζ (RPTPβ/ζ) and c-Src activation. Downstream of αvβ3, PI3K activity mediated this phenomenon and cell surface NCL was found to interact with both αvβ3 and RPTPβ/ζ. Positive correlation of cell surface NCL and αvβ3 expression was also observed in human glioblastoma tissue arrays, and inhibition of cell migration by cell surface NCL antagonists was observed only in cells expressing αvβ3. Collectively, these data suggest that both expression and β3 integrin phosphorylation at Tyr773 determine the cell surface localization of NCL downstream of the RPTPβ/ζ/c-Src signaling cascade and can be used as a biomarker for the use of cell surface NCL antagonists as anticancer agents.  相似文献   
125.
Smoking may modify the inflammatory pattern of the asthmatic airways. Osteopontin (OPN) has been associated with inflammation and fibrosis. In asthma, sputum levels of OPN are elevated and have been related to the underlying severity and to mediators expressing remodeling and inflammation.To evaluate the levels of OPN in sputum supernatants of asthmatic patients and to investigate the possible role of smoking as well as associations with mediators and cells involved in the inflammatory and remodeling process.We studied 103 asthma patients (49 smokers) and 40 healthy subjects (20 smokers) who underwent lung function tests, bronchial hyperresponsiveness to methacholine, and sputum induction for cell count identification and measurement of OPN, TGF-β1, IL-8, IL-13 and ECP in sputum supernatants. The concentrations of all mediators were measured using enzyme immunoassays.OPN levels (pg/ml) were significantly higher in smoking asthmatics compared to non-smoking asthmatics, and both non-smoking and smoking controls [median (interquartile ranges) 1120 (651, 1817) vs. 197 (118, 341) vs. 50 (42, 70) vs. 102 (77, 110) pg/ml, respectively; p < 0.001]. Regression analysis provided significant associations between OPN and sputum neutrophils, IL-8 and TGF-β1, the most significant being the one with TGF-β1. These associations were present only in smoking asthmatics.Smoking habit significantly affects sputum OPN levels in asthma. The associations of OPN with sputum neutrophils, TGF-β1 and IL-8 in smoking asthmatics suggest a possible role for OPN in the neutrophilic inflammation and remodeling process in this phenotype of asthma.  相似文献   
126.
127.
A protein complex network of Drosophila melanogaster   总被引:1,自引:0,他引:1  
Determining the composition of protein complexes is an essential step toward understanding the cell as an integrated system. Using coaffinity purification coupled to mass spectrometry analysis, we examined protein associations involving nearly 5,000 individual, FLAG-HA epitope-tagged Drosophila proteins. Stringent analysis of these data, based on a statistical framework designed to define individual protein-protein interactions, led to the generation of a Drosophila protein interaction map (DPiM) encompassing 556 protein complexes. The high quality of the DPiM and its usefulness as a paradigm for metazoan proteomes are apparent from the recovery of many known complexes, significant enrichment for shared functional attributes, and validation in human cells. The DPiM defines potential novel members for several important protein complexes and assigns functional links to 586 protein-coding genes lacking previous experimental annotation. The DPiM represents, to our knowledge, the largest metazoan protein complex map and provides a valuable resource for analysis of protein complex evolution.  相似文献   
128.
With an aim toward glycogenolysis control in Type 2 diabetes, we have investigated via kinetic experiments and computation the potential of indirubin (IC?? > 50 μM), indirubin-3'-oxime (IC?? = 144 nM), KT5720 (K(i) = 18.4 nM) and staurosporine (K(i) = 0.37 nM) as phosphorylase kinase (PhKγtrnc) ATP-binding site inhibitors, with the latter two revealed as potent inhibitors in the low nM range. Because of lack of structural information, we have exploited information from homologous kinase complexes to direct in silico calculations (docking, molecular dynamics, and MMGBSA) to predict the binding characteristics of the four ligands. All inhibitors are predicted to bind in the same active site area as the ATP adenine ring, with binding dominated by hinge region hydrogen bonds to Asp104:O and Met106:O (all four ligands) and also Met106:NH (for the indirubins). The PhKγtrnc-staurosporine complex has the greatest number of receptor-ligand hydrogen bonds, while for the indirubin-3'-oxime and KT5720 complexes there is an important network of interchanging water molecules bridging inhibitor-enzyme contacts. The MM-GBSA results revealed the source of staurosporine's low nM potency to be favorable electrostatic interactions, while KT5720 has strong van der Waals contributions. KT5720 interacts with the greatest number of protein residues either by direct or 1-water bridged hydrogen bond interactions, and the potential for more selective PhK inhibition based on a KT5720 analogue has been established. Including receptor flexibility in Schr?dinger induced-fit docking calculations in most cases correctly predicted the binding modes as compared with the molecular dynamics structures; the algorithm was less effective when there were key structural waters bridging receptor-ligand contacts.  相似文献   
129.
130.
It is becoming increasingly clear that signals generated in tumor microenvironments are crucial to tumor cell behavior, such as survival, progression and metastasis. The establishment of these malignant behaviors requires that tumor cells acquire novel adhesion and migration properties to detach from their original sites and to localize to distant organs. CD44, an adhesion/homing molecule, is a major receptor for the glycosaminoglycan hyaluronan, which is one of the major components of the tumor extracellular matrix. CD44, a multistructural and multifunctional molecule, detects changes in extracellular matrix components, and thus is well positioned to provide appropriate responses to changes in the microenvironment, i.e. engagement in cell-cell and cell-extracellular matrix interactions, cell trafficking, lymph node homing and the presentation of growth factors/cytokines/chemokines to co-ordinate signaling events that enable the cell responses that change in the tissue environment. The potential involvement of CD44 variants (CD44v), especially CD44v4-v7 and CD44v6-v9, in tumor progression has been confirmed for many tumor types in numerous clinical studies. The downregulation of the standard CD44 isoform (CD44s) in colon cancer is postulated to result in increased tumorigenicity. CD44v-specific functions could be caused by their higher binding affinity than CD44s for hyaluronan. Alternatively, CD44v-specific functions could be caused by differences in associating molecules, which may bind selectively to the CD44v exon. This minireview summarizes how the interaction between hyaluronan and CD44v can serve as a potential target for cancer therapy, in particular how silencing CD44v can target multiple metastatic tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号