首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   24篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   11篇
  2014年   17篇
  2013年   23篇
  2012年   26篇
  2011年   28篇
  2010年   18篇
  2009年   14篇
  2008年   20篇
  2007年   13篇
  2006年   21篇
  2005年   19篇
  2004年   11篇
  2003年   15篇
  2002年   10篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有310条查询结果,搜索用时 375 毫秒
271.
272.
Polyglutamine (polyQ) diseases are genetically inherited neurodegenerative disorders. They are caused by mutations that result in polyQ expansions of particular proteins. Mutant proteins form intranuclear aggregates, induce cytotoxicity and cause neuronal cell death. Protein interaction data suggest that polyQ regions modulate interactions between coiled‐coil (CC) domains. In the case of the polyQ disease spinocerebellar ataxia type‐1 (SCA1), interacting proteins with CC domains further enhance aggregation and toxicity of mutant ataxin‐1 (ATXN1). Here, we suggest that CC partners interacting with the polyQ region of a mutant protein, increase its aggregation while partners that interact with a different region reduce the formation of aggregates. Computational analysis of genetic screens revealed that CC‐rich proteins are highly enriched among genes that enhance pathogenicity of polyQ proteins, supporting our hypothesis. We therefore suggest that blocking interactions between mutant polyQ proteins and their CC partners might constitute a promising preventive strategy against neurodegeneration.  相似文献   
273.
The Hox gene collinearity enigma has often been approached using models based on biomolecular mechanisms. The biophysical model is an alternative approach based on the hypothesis that collinearity is caused by physical forces pulling the Hox genes from a territory where they are inactive to a distinct spatial domain where they are activated in a step by step manner. Such Hox gene translocations have recently been observed in support of the biophysical model. Genetic engineering experiments, performed on embryonic mice, gave rise to several unexpected mutant expressions that the biomolecular models cannot predict. On the contrary, the biophysical model offers convincing explanation. Evolutionary constraints consolidate the Hox clusters and as a result, denser and well organized clusters may create more efficient physical forces and a more emphatic manifestation of gene collinearity. This is demonstrated by stochastic modeling with white noise perturbing the expression of Hox genes. As study cases the genomes of mouse and amphioxus are used. The results support the working hypothesis that vertebrates have adopted their comparably more compact Hox clustering as a tool needed to develop more complex body structures. Several experiments are proposed in order to test further the physical forces hypothesis.  相似文献   
274.
Several studies have shown that taxa with poor dispersal ability have a higher level of compositional dissimilarity than good dispersers. However, compositional dissimilarity patterns between islands with respect to dispersal ability of taxa have never been investigated before. In this study, we investigated compositional dissimilarity patterns of three taxonomic groups, namely amphibians, lizards, and snakes, differing in their dispersal abilities, in various insular systems around the world. We compiled presence–absence matrices, based on which we calculated several metacommunity indices to check for differences among taxonomic groups and island types (oceanic and continental shelf) using classical statistical tests and generalized linear mixed-effects models. According to our results, compositional dissimilarity was positively affected by the isolation of the insular system, in accordance to theory. In particular, oceanic systems were characterized by a high level of compositional dissimilarity between islands and subsequently by a low level of nestedness. SIEs may be generating these patterns causing distortions from expected levels of nestedness. Similar to our predictions, compositional dissimilarity patterns were also dependent on taxon-specific dispersal ability, with good dispersers showing lower levels of between-island compositional dissimilarity than poor dispersers in continental shelf systems. However, this pattern was not observed in oceanic systems. In conclusion, compositional dissimilarity in insular systems is dependent on both taxon and island type.  相似文献   
275.

Background

Patients with well-differentiated small intestine neuroendocrine tumors (WD-SI-NETs) are most often diagnosed at a metastatic stage of disease, which reduces possibilities for a curative treatment. Thus new approaches for earlier detection and improved monitoring of the disease are required.

Materials and Methods

Suspension bead arrays targeting 124 unique proteins with antibodies from the Human Protein Atlas were used to profile biotinylated serum samples. Discoveries from a cohort of 77 individuals were followed up in a cohort of 132 individuals both including healthy controls as well as patients with untreated primary WD-SI-NETs, lymph node metastases and liver metastases.

Results

A set of 20 antibodies suggested promising proteins for further verification based on technically verified statistical significance. Proceeding, we assessed the classification performance in an independent cohort of patient serum, achieving, classification accuracy of up to 85% with different subsets of antibodies in respective pairwise group comparisons. The protein profiles of nine targets, namely IGFBP2, IGF1, SHKBP1, ETS1, IL1α, STX2, MAML3, EGR3 and XIAP were verified as significant contributors to tumor classification.

Conclusions

We propose new potential protein biomarker candidates for classifying WD-SI-NETs at different stage of disease. Further evaluation of these proteins in larger sample sets and with alternative approaches is needed in order to further improve our understanding of their functional relation to WD-SI-NETs and their eventual use in diagnostics.  相似文献   
276.
Light toxicity is suspected to enhance certain retinal degenerative processes such as age-related macular degeneration. Death of photoreceptors can be induced by their exposure to the visible light, and although cellular processes within photoreceptors have been characterized extensively, the role of the retinal pigment epithelium (RPE) in this model is less well understood. We demonstrate that exposition to intense light causes the immediate breakdown of the outer blood–retinal barrier (BRB). In a molecular level, we observed the slackening of adherens junctions tying up the RPE and massive leakage of albumin into the neural retina. Retinal pigment epithelial cells normally secrete vascular endothelial growth factor (VEGF) at their basolateral side; light damage in contrast leads to VEGF increase on the apical side – that is, in the neuroretina. Blocking VEGF, by means of lentiviral gene transfer to express an anti-VEGF antibody in RPE cells, inhibits outer BRB breakdown and retinal degeneration, as illustrated by functional, behavioral and morphometric analysis. Our data show that exposure to high levels of visible light induces hyperpermeability of the RPE, likely involving VEGF signaling. The resulting retinal edema contributes to irreversible damage to photoreceptors. These data suggest that anti-VEGF compounds are of therapeutic interest when the outer BRB is altered by retinal stresses.  相似文献   
277.
278.
279.
Disc degeneration is the most common cause of back pain in adults and has enormous socioeconomic implications. Conservative management is ineffective in most cases, and results of surgical treatment have not yet reached desirable standards. Biologic treatment options are an alternative to the above conventional management and have become very attractive in recent years. The present review highlights the currently available biologic treatment options in mild and moderate disc degeneration, where a potential for regeneration still exists. Biologic treatment options include protein-based and cell-based therapies. Protein-based therapies involve administration of biologic factors into the intervertebral disc to enhance matrix synthesis, delay degeneration or impede inflammation. These factors can be delivered by an intradiscal injection, alone or in combination with cells or tissue scaffolds and by gene therapy. Cell-based therapies comprise treatment strategies that aim to either replace necrotic or apoptotic cells, or minimize cell death. Cell-based therapies are more appropriate in moderate stages of degenerated disc disease, when cell population is diminished; therefore, the effect of administration of growth factors would be insufficient. Although clinical application of biologic treatments is far from being an everyday practice, the existing studies demonstrate promising results that will allow the future design of more sophisticated methods of biologic intervention to treat intervertebral disc degeneration.  相似文献   
280.
We investigated the molecular diversity of cyanobacteria and bacteria during a water bloom in a lake with a long history of toxic cyanobacterial blooms (Lake Kastoria, Greece). We also tested the hypothesis whether bloom-forming cyanobacteria are preserved in the lake’s sediment 2 years after the bloom. The dominant cyanobacteria during the bloom included the potentially toxin-producing Microcystis aeruginosa and several other Chroococcales forms closely related to the genus Microcystis. This suggests that the use of cyanobacterial-specific primers seems to be very informative in describing the cyanobacteria during the water blooms. The bacterial community showed high diversity, consisting mostly of singleton and doubleton phylotypes. The majority of the phylotypes were typical lake bacteria including some potential pathogens and toxin metabolising bacteria, suggesting that the dominant toxic cyanobacteria did not have any significant effect on the bacterial community structure. In the sediment, 2 years after the water bloom, no bloom-forming cyanobacteria were retrieved, suggesting that they cannot be preserved in the sediment. Similar to the water column, sediment bacterial diversity was also high, consisting mostly of yet-uncultured bacteria that are related to environments where organic matter degradation takes place.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号