首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6449篇
  免费   600篇
  国内免费   2篇
  7051篇
  2024年   7篇
  2023年   44篇
  2022年   74篇
  2021年   123篇
  2020年   90篇
  2019年   111篇
  2018年   163篇
  2017年   126篇
  2016年   227篇
  2015年   392篇
  2014年   413篇
  2013年   480篇
  2012年   613篇
  2011年   557篇
  2010年   361篇
  2009年   299篇
  2008年   391篇
  2007年   384篇
  2006年   341篇
  2005年   305篇
  2004年   340篇
  2003年   289篇
  2002年   255篇
  2001年   41篇
  2000年   39篇
  1999年   62篇
  1998年   83篇
  1997年   41篇
  1996年   30篇
  1995年   45篇
  1994年   33篇
  1993年   32篇
  1992年   34篇
  1991年   17篇
  1990年   16篇
  1989年   20篇
  1988年   20篇
  1987年   9篇
  1986年   8篇
  1985年   10篇
  1984年   8篇
  1983年   13篇
  1982年   11篇
  1981年   11篇
  1980年   11篇
  1979年   6篇
  1978年   10篇
  1976年   9篇
  1974年   10篇
  1968年   7篇
排序方式: 共有7051条查询结果,搜索用时 0 毫秒
71.
The crab genus Brachynotus de Haan, 1833 is restricted to the intertidal and shallow subtidal of the Mediterranean and northeastern Atlantic. It is presently recognized to consist of four species, of which three (B. foresti, B. gemmellari and B. sexdentatus) are endemic to the Mediterranean. The fourth species, B. atlanticus, is found along the Atlantic coasts of northern Africa and southern Europe, but also extends into the western Mediterranean. This high level of endemism suggests that speciation within Brachynotus is strongly correlated with the geography and geology of the Mediterranean Sea. A molecular phylogeny based on the mitochondrial large subunit (16S) rRNA gene indicates that the four species of Brachynotus form a monophyletic group within Atlantic Varunidae. The DNA sequence data also show that the genus Brachynotus can be subdivided into two species groups, one comprising B. atlanticus and B. foresti, and the other one B. gemmellari and B. sexdentatus. While B. atlanticus and B. foresti are clearly genetically distinct, B. gemmellari and B. sexdentatus are identical in the studied region of the 16S rRNA gene, suggesting a recent separation or continuing gene flow.  相似文献   
72.
Invasive non-native plants are a major driver of native biodiversity loss, yet native biodiversity can sometimes benefit from non-native species. Depending on habitat context, even the same non-native species can have positive and negative effects on biodiversity. Blackberry (Rubus fruticosus aggregate) is a useful model organism to better understand a non-native plant with conflicting impacts on biodiversity. We used a replicated capture-mark-recapture study across 11 consecutive seasons to examine the response of small mammal diversity and abundance to vegetation structure and density associated with non-native blackberry (R. anglocandicans) in native, hybrid and blackberry-dominated novel ecosystems in Australia. Across the three habitat types, increasing blackberry dominance had a positive influence on mammal diversity, while the strength and direction of this influence varied for abundance. At a microhabitat scale within hybrid and native habitat there were no significant differences in diversity, or the abundance of most species, between microhabitats where blackberry was absent versus dominant. In contrast, in novel ecosystems diversity and abundances were very low without blackberry, yet high (comparable to native ecosystems) within blackberry as it provided functionally-analogous vegetation structure and density to the lost native understory. Our results indicate the ecological functions of non-native plant species vary depending on habitat and need to be considered for management. Comparative studies such as ours that apply a standardized approach across a broad range of conditions at the landscape and habitat scale are crucial for guiding land managers on control options for non-native species (remove, reduce or retain and contain) that are context-sensitive and scale-dependent.  相似文献   
73.
Two secretases are involved in the generation of amyloid beta-peptide, the principal component of amyloid plaques in the brains of Alzheimer's disease patients. While beta-secretase is a classical aspartyl protease, gamma-secretase activity is associated with a high molecular weight complex. One of the complex components, which is critically required for gamma-secretase activity is nicastrin (NCT). Here we investigate the assembly of NCT into the gamma-secretase complex. NCT mutants either lacking the entire cytoplasmic tail, the cytoplasmic tail, and the transmembrane domain (TMD), or containing a set of heterologous TMDs were expressed in cells with strongly reduced levels of endogenous NCT. Maturation of exogenous NCT, gamma-secretase complex formation and proteolytic function was then investigated. This revealed that the cytoplasmic tail of NCT is dispensable for gamma-secretase complex assembly and function. In contrast, the authentic TMD of NCT is critically required for the interaction with gamma-secretase complex components and for formation of an active gamma-secretase complex. Neither soluble NCT lacking any membrane anchor nor NCT containing a heterologous TMD were inserted into the gamma-secretase complex. We identified the N-terminal region of the NCT TMD as a functionally important entity of NCT. These data thus demonstrate that NCT interacts with other gamma-secretase complex components via its TMD.  相似文献   
74.
Biological sulfide oxidation is a reaction occurring in all three domains of life. One enzyme responsible for this reaction in many bacteria has been identified as sulfide:quinone oxidoreductase (SQR). The enzyme from Rhodobacter capsulatus is a peripherally membrane-bound flavoprotein with a molecular mass of approximately 48 kDa, presumably acting as a homodimer. In this work, SQR from Rb. capsulatus has been modified with an N-terminal His tag and heterologously expressed in and purified from Escherichia coli. Three cysteine residues have been shown to be essential for the reductive half-reaction by site-directed mutagenesis. The catalytic activity has been nearly completely abolished after mutation of each of the cysteines to serine. A decrease in fluorescence on reduction by sulfide as observed for the wild-type enzyme has not been observed for any of the mutated enzymes. Mutation of a conserved valine residue to aspartate within the third flavin-binding domain led to a drastically reduced substrate affinity, for both sulfide and quinone. Two conserved histidine residues have been mutated individually to alanine. Both of the resulting enzymes exhibited a shift in the pH dependence of the SQR reaction. Polysulfide has been identified as a primary reaction product using spectroscopic and chromatographic methods. On the basis of these data, reaction mechanisms for sulfide-dependent reduction and quinone-dependent oxidation of the enzyme and for the formation of polysulfide are proposed.  相似文献   
75.
76.
Hypertrophic cardiomyopathy (HCM) is a genetically and clinically heterogeneous myocardial disease that is in most cases familial and transmitted in a dominant fashion. The most frequently affected gene codes for the cardiac (ventricular) β-myosin heavy chain. We have investigated the genetic cause of an isolated case of HCM, which was marked by an extremely severe phenotype and a very early age of onset. HCM is normally not a disease of small children. The proband was a boy who had suffered cardiac arrest at the age of 6.5years (resuscitation by cardioconversion). Upon screening of the β-myosin heavy chain gene as a candidate, two missense mutations, one in exon19 (Arg719Trp) and a second in exon12 (Met349Thr), were identified. The Arg719Trp mutation was de novo, as it was not found in the parents. In contrast, the Met349Thr mutation was inherited through the maternal grandmother. Six family members were carriers of this mutation but only the proband was clinically affected. Segregation and molecular analysis allowed us to assign the Met349Thr mutation to the maternal and the Arg719Trp de novo mutation to the paternal β-myosin allele. Thus, the patient has no normal myosin. We interpret these findings in terms of compound heterozygosity of a dominant (Arg719Trp) and a recessive (Met349Thr) mutation. Whereas a single mutated Arg719Trp allele would be sufficient to cause HCM, the concurrent Met349Thr mutation alone does not apparently induce the disease. Nevertheless, it conceivably contributes to the particularly severe phenotype. Received: 15 September 1997 / Accepted: 26 November 1997  相似文献   
77.
78.
The alpha(1c) subunit of the cardiac L-type Ca(2+) channel, which contains the channel pore, voltage- and Ca(2+)-dependent gating structures, and drug binding sites, has been well studied in heterologous expression systems, but many aspects of L-type Ca(2+) channel behavior in intact cardiomyocytes remain poorly characterized. Here, we develop adenoviral constructs with E1, E3 and fiber gene deletions, to allow incorporation of full-length alpha(1c) gene cassettes into the adenovirus backbone. Wild-type (alpha(1c-wt)) and mutant (alpha(1c-D-)) Ca(2+) channel adenoviruses were constructed. The alpha(1c-D-) contained four point substitutions at amino acid residues known to be critical for dihydropyridine binding. Both alpha(1c-wt) and alpha(1c-D-) expressed robustly in A549 cells (peak L-type Ca(2+) current (I(CaL)) at 0 mV: alpha(1c-wt) -9.94+/-1.00pA/pF, n=9; alpha(1c-D-) -10.30pA/pF, n=12). I(CaL) carried by alpha(1c-D-) was markedly less sensitive to nitrendipine (IC(50) 17.1 microM) than alpha(1c-wt) (IC(50) 88 nM); a feature exploited to discriminate between engineered and native currents in transduced guinea-pig myocytes. 10 microM nitrendipine blocked only 51+/-5% (n=9) of I(CaL) in alpha(1c-D-)-expressing myocytes, in comparison to 86+/-8% (n=9) of I(CaL) in control myocytes. Moreover, in 20 microM nitrendipine, calcium transients could still be evoked in alpha(1c-D-)-transduced cells, but were largely blocked in control myocytes, indicating that the engineered channels were coupled to sarcoplasmic reticular Ca(2+) release. These alpha(1c) adenoviruses provide an unprecedented tool for structure-function studies of cardiac excitation-contraction coupling and L-type Ca(2+) channel regulation in the native myocyte background.  相似文献   
79.

Background & Aims

The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are gastrointestinal peptide hormones regulating postprandial insulin release from pancreatic β-cells. GLP-1 agonism is a treatment strategy in Type 2 diabetes and is evaluated in Non-alcoholic fatty liver disease (NAFLD). However, the role of incretins in its pathophysiology is insufficiently understood. Studies in mice suggest improvement of hepatic steatosis by GLP-1 agonism. We determined the secretion of incretins after oral glucose administration in non-diabetic NAFLD patients.

Methods

N = 52 patients (n = 16 NAFLD and n = 36 Non-alcoholic steatohepatitis (NASH) patients) and n = 50 matched healthy controls were included. Standardized oral glucose tolerance test was performed. Glucose, insulin, glucagon, GLP-1 and GIP plasma levels were measured sequentially for 120 minutes after glucose administration.

Results

Glucose induced GLP-1 secretion was significantly decreased in patients compared to controls (p<0.001). In contrast, GIP secretion was unchanged. There was no difference in GLP-1 and GIP secretion between NAFLD and NASH subgroups. All patients were insulin resistant, however HOMA2-IR was highest in the NASH subgroup. Fasting and glucose-induced insulin secretion was higher in NAFLD and NASH compared to controls, while the glucose lowering effect was diminished. Concomitantly, fasting glucagon secretion was significantly elevated in NAFLD and NASH.

Conclusions

Glucose-induced GLP-1 secretion is deficient in patients with NAFLD and NASH. GIP secretion is contrarily preserved. Insulin resistance, with hyperinsulinemia and hyperglucagonemia, is present in all patients, and is more severe in NASH compared to NAFLD. These pathophysiologic findings endorse the current evaluation of GLP-1 agonism for the treatment of NAFLD.  相似文献   
80.
An isocratic high-performance liquid chromatographic (HPLC) method with ultraviolet detection is described for the quantification of the atypical neuroleptic clozapine and its major metabolites, N-desmethylclozapine and clozapine N-oxide, in human serum or plasma. The method included automated solid-phase extraction on C18 reversed-phase material. Clozapine and its metabolites were separated by HPLC on a C18 ODS Hypersil analytical column (5 μm particle size; 250 mm × 4.6 mm I.D.) using an acetonitrile—water (40:60, v/v) eluent buffered with 0.4% (v/v) N,N,N′,N′-tetramethylethylenediamine and acetic acid to pH 6.5. Imipramine served as internal standard. After extraction of 1 ml of serum or plasma, as little as 5 ng/ml of clozapine and 10 or 20 ng/ml of the metabolites were detectable. Linearity was found for drug concentrations between 5 and 2000 ng/ml as indicated by correlation coefficients of 0.998 to 0.985. The intra- and inter-assay coefficients of variation ranged between 1 and 20%. Interferences with other psychotropic drugs such as benzodiazepines, antidepressants or neuroleptics were negligible. In all samples, collected from schizophrenic patients who had been treated with daily oral doses of 75–400 mg of clozapine, the drug and its major metabolite, N-desmethylclozapine, could be detected, while the concentrations of clozapine N-oxide were below 20 ng/ml in three of sixteen patients. Using the method described here, data regarding relations between therapeutic or toxic effects and drug blood levels or metabolism may be collected in clinical practice to improve the therapeutic efficacy of clozapine drug treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号