首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   9篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   5篇
  2011年   2篇
  2009年   2篇
  2008年   8篇
  2007年   1篇
  2006年   3篇
  2005年   4篇
  2004年   8篇
  2003年   9篇
  2002年   6篇
  2001年   8篇
  2000年   14篇
  1999年   7篇
  1998年   1篇
  1997年   8篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   6篇
  1992年   2篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1919年   1篇
排序方式: 共有134条查询结果,搜索用时 62 毫秒
41.
42.
43.
44.
An enzyme system catalyzing the conversion of isopentenyl pyrophosphate to phytoene has been isolated from Neurospora crassa mycelia. This enzyme system shows an absolute requirement for Mg?, but no other cofactors. Cultures of N. crassa exhibit a low level of phytoene synthesizing activity when grown in the dark. A 2-min in vivo blue light irradiation results in a ninefold increase in activity after 24 h. This increase is dependent on the duration of the light treatment and is inhibited by cycloheximide. A similar blue light-induced elevation of phytoene synthesizing activity was demonstrated in an albino-1 mutant. This enzyme activity was not found in either dark-grown or irradiated cultures of an albino-2 or an albino-3 mutant.  相似文献   
45.
As stem cells undergo differentiation, mitochondrial DNA (mtDNA) copy number is strictly regulated in order that specialized cells can generate appropriate levels of adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) to undertake their specific functions. It is not understood whether tumor-initiating cells regulate their mtDNA in a similar manner or whether mtDNA is essential for tumorigenesis. We show that human neural stem cells (hNSCs) increased their mtDNA content during differentiation in a process that was mediated by a synergistic relationship between the nuclear and mitochondrial genomes and results in increased respiratory capacity. Differentiating multipotent glioblastoma cells failed to match the expansion in mtDNA copy number, patterns of gene expression and increased respiratory capacity observed in hNSCs. Partial depletion of glioblastoma cell mtDNA rescued mtDNA replication events and enhanced cell differentiation. However, prolonged depletion resulted in impaired mtDNA replication, reduced proliferation and induced the expression of early developmental and pro-survival markers including POU class 5 homeobox 1 (OCT4) and sonic hedgehog (SHH). The transfer of glioblastoma cells depleted to varying degrees of their mtDNA content into immunocompromised mice resulted in tumors requiring significantly longer to form compared with non-depleted cells. The number of tumors formed and the time to tumor formation was relative to the degree of mtDNA depletion. The tumors derived from mtDNA depleted glioblastoma cells recovered their mtDNA copy number as part of the tumor formation process. These outcomes demonstrate the importance of mtDNA to the initiation and maintenance of tumorigenesis in glioblastoma multiforme.  相似文献   
46.
47.
Several aspects of the basic biology of the western tarnished plant bug, Lygus hesperus Knight, are poorly known despite the economic importance of this species. Among these are the factors regulating the adult diapause. Reports of recent studies questioned the validity of earlier reports of diapause in L. hesperus, in part because of the demonstrated loss of diapause response in insects obtained from long-standing laboratory colonies. However, use of laboratory reared insects would facilitate additional diapause research, so long as those insects exhibit a diapause response similar to that of the field population. L. hesperus, originating as eggs from field-collected insects, were reared in the laboratory for four generations to examine corresponding changes in selected biological characteristics. Over the course of the four generations, incidence of diapause in both L. hesperus genders decreased whereas the frequency of oviposition by virgin females increased. Measurable changes were not observed in frequency of occurrence of a specific fat body type (glass bead fat) or nymphal development time. These results suggest L. hesperus used in diapause research should be as close to the field population as possible, but no further removed than three generations. Results further demonstrate variability among different biological characteristics in their responses to selection from laboratory rearing. Collectively, these findings demonstrate the importance of understanding the influences of rearing on specific biological characteristics under study, and the need to verify the similarity of laboratory-reared insects to their native counterparts in studies used to draw inferences regarding the field population.  相似文献   
48.
49.
50.
Cattle grazing profoundly affects abiotic and biotic characteristics of ecosystems. While most research has been performed on grasslands, the effect of large managed ungulates on forest ecosystems has largely been neglected. Compared to a baseline seminatural state, we investigated how long‐term cattle grazing of birch forest patches affected the abiotic state and the ecological community (microbes and invertebrates) of the soil subsystem. Grazing strongly modified the soil abiotic environment by increasing phosphorus content, pH, and bulk density, while reducing the C:N ratio. The reduced C:N ratio was strongly associated with a lower microbial biomass, mainly caused by a reduction of fungal biomass. This was linked to a decrease in fungivorous nematode abundance and the nematode channel index, indicating a relative uplift in the importance of the bacterial energy‐channel in the nematode assemblages. Cattle grazing highly modified invertebrate community composition producing distinct assemblages from the seminatural situation. Richness and abundance of microarthropods was consistently reduced by grazing (excepting collembolan richness) and grazing‐associated changes in soil pH, Olsen P, and reduced soil pore volume (bulk density) limiting niche space and refuge from physical disturbance. Anecic earthworm species predominated in grazed patches, but were absent from ungrazed forest, and may benefit from manure inputs, while their deep vertical burrowing behavior protects them from physical disturbance. Perturbation of birch forest habitat by long‐term ungulate grazing profoundly modified soil biodiversity, either directly through increased physical disturbance and manure input or indirectly by modifying soil abiotic conditions. Comparative analyses revealed the ecosystem engineering potential of large ungulate grazers in forest systems through major shifts in the composition and structure of microbial and invertebrate assemblages, including the potential for reduced energy flow through the fungal decomposition pathway. The precise consequences for species trophic interactions and biodiversity–ecosystem function relationships remain to be established, however.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号