首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   905篇
  免费   115篇
  国内免费   1篇
  1021篇
  2022年   8篇
  2021年   21篇
  2020年   6篇
  2018年   6篇
  2017年   11篇
  2016年   10篇
  2015年   31篇
  2014年   33篇
  2013年   33篇
  2012年   24篇
  2011年   35篇
  2010年   28篇
  2009年   29篇
  2008年   46篇
  2007年   43篇
  2006年   28篇
  2005年   40篇
  2004年   57篇
  2003年   43篇
  2002年   42篇
  2001年   38篇
  2000年   21篇
  1999年   24篇
  1998年   10篇
  1997年   11篇
  1996年   15篇
  1995年   7篇
  1994年   10篇
  1993年   14篇
  1992年   19篇
  1991年   16篇
  1990年   24篇
  1989年   18篇
  1988年   18篇
  1987年   21篇
  1986年   15篇
  1985年   24篇
  1984年   12篇
  1983年   13篇
  1982年   10篇
  1981年   10篇
  1980年   5篇
  1979年   7篇
  1978年   7篇
  1977年   11篇
  1974年   9篇
  1973年   8篇
  1972年   9篇
  1971年   5篇
  1969年   4篇
排序方式: 共有1021条查询结果,搜索用时 0 毫秒
31.
Pleiotrophin (PTN) is a growth factor with both pro-angiogenic and limited pro-tumorigenic activity. We evaluated the potential for PTN to be used for safe angiogenic gene therapy using the full length gene and a truncated gene variant lacking the domain implicated in tumorigenesis. Mouse myoblasts were transduced to express full length or truncated PTN (PTN or T-PTN), along with a LacZ reporter gene, and injected into mouse limb muscle and myocardium. In cultured myoblasts, PTN was expressed and secreted via the Golgi apparatus, but T-PTN was not properly secreted. Nonetheless, no evidence of uncontrolled growth was observed in cells expressing either form of PTN. PTN gene delivery to myocardium, and non-ischemic skeletal muscle, did not result in a detectable change in vascularity or function. In ischemic hindlimb at 14 days post-implantation, intramuscular injection with PTN-expressing myoblasts led to a significant increase in skin perfusion and muscle arteriole density. We conclude that (1) delivery of the full length PTN gene to muscle can be accomplished without tumorigenesis, (2) the truncated PTN gene may be difficult to use in a gene therapy context due to inefficient secretion, (3) PTN gene delivery leads to functional benefit in the mouse acute ischemic hindlimb model.  相似文献   
32.
Ravenna grass, Tripidium ravennae (L.) H. Scholz, is known to produce an abundance of biomass, but how plant density affects its biomass potential remains unknown. The objectives were to determine the effects of plant density on biomass yield; plant growth traits; biomass?carbon, nitrogen, and ash concentrations; heating value; nitrogen removal; and sucrose concentration in leaves and culms. The treatments consisted of five plant densities (1,250; 2,500; 5,000; 10,000; and 20,000 plants per hectare) in a randomized complete block design with four blocks. Plots were nonirrigated, unfertilized, and harvested once during the dormant season each year. Data were collected from 2015?2019. Dependent variables that varied with plant population density (p < .05) were biomass yield, number of reproductive culms per plant, reproductive culm diameter, reproductive culm sucrose concentration, and nitrogen removal with biomass. Biomass yield ranged from 5.6 to 16.3 Mg/ha for plant densities of 1,250–20,000 plants per hectare, respectively. Combined over years, nonlinear regression of the data showed the equation for biomass yield to plateau at 16.2 Mg/ha at a plant density of 10,640 plants per hectare. As plant density increased, the number of reproductive culms per plant, culm diameter, and culm sucrose concentration significantly decreased. At 1,250 plants per hectare, the number of reproductive culms per plant, culm diameter, and culm sucrose averaged 70, 10.2 mm, and 63.2 g/kg, respectively. Nitrogen removed with biomass significantly increased as biomass yield increased with plant density. At a density of 10,000 and 20,000 plants per hectare, the amount of nitrogen removed annually in the harvested biomass averaged 88 kg/ha. The data suggest that 10,000 plants per hectare would produce the greatest annual biomass yields; however, research is needed to determine the nutrient requirement for Ravenna grass to sustain biomass production at that density.  相似文献   
33.
Tumor infiltrating lymphocytes (TIL), especially T-cells, have both prognostic and therapeutic applications. The presence of CD8+ effector T-cells and the ratio of CD8+ cells to FOXP3+ regulatory T-cells have been used as biomarkers of disease prognosis to predict response to various immunotherapies. Blocking the interaction between inhibitory receptors on T-cells and their ligands with therapeutic antibodies including atezolizumab, nivolumab, pembrolizumab and tremelimumab increases the immune response against cancer cells and has shown significant improvement in clinical benefits and survival in several different tumor types. The improved clinical outcome is presumed to be associated with a higher tumor infiltration; therefore, it is thought that more accurate methods for measuring the amount of TIL could assist prognosis and predict treatment response. We have developed and validated quantitative immunohistochemistry (IHC) assays for CD3, CD8 and FOXP3 for immunophenotyping T-lymphocytes in tumor tissue. Various types of formalin fixed, paraffin embedded (FFPE) tumor tissues were immunolabeled with anti-CD3, anti-CD8 and anti-FOXP3 antibodies using an IHC autostainer. The tumor area of stained tissues, including the invasive margin of the tumor, was scored by a pathologist (visual scoring) and by computer-based quantitative image analysis. Two image analysis scores were obtained for the staining of each biomarker: the percent positive cells in the tumor area and positive cells/mm2 tumor area. Comparison of visual vs. image analysis scoring methods using regression analysis showed high correlation and indicated that quantitative image analysis can be used to score the number of positive cells in IHC stained slides. To demonstrate that the IHC assays produce consistent results in normal daily testing, we evaluated the specificity, sensitivity and reproducibility of the IHC assays using both visual and image analysis scoring methods. We found that CD3, CD8 and FOXP3 IHC assays met the fit-for-purpose analytical acceptance validation criteria and that they can be used to support clinical studies.  相似文献   
34.

The nucleus-encoded 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) regulates cyclophilin D (cypD) in the mitochondrial matrix. CypD regulates opening of mitochondrial permeability transition pores. Both mechanisms may be affected by amyloid β peptides accumulated in mitochondria in Alzheimer's disease (AD). In order to clarify changes occurring in brain mitochondria, we evaluated interactions of both mitochondrial proteins in vitro (by surface plasmon resonance biosensor) and detected levels of various complexes of 17β-HSD10 formed in vivo (by sandwich ELISA) in brain mitochondria isolated from the transgenic animal model of AD (homozygous McGill-R-Thy1-APP rats) and in cerebrospinal fluid samples of AD patients. By surface plasmon resonance biosensor, we observed the interaction of 17β-HSD10 and cypD in a direct real-time manner and determined, for the first time, the kinetic parameters of the interaction (ka 2.0?×?105 M1s?1, kd 5.8?×?104 s?1, and KD 3.5?×?10–10 M). In McGill-R-Thy1-APP rats compared to controls, levels of 17β-HSD10–cypD complexes were decreased and those of total amyloid β increased. Moreover, the levels of 17β-HSD10–cypD complexes were decreased in cerebrospinal fluid of individuals with AD (in mild cognitive impairment as well as dementia stages) or with Frontotemporal lobar degeneration (FTLD) compared to cognitively normal controls (the sensitivity of the complexes to AD dementia was 92.9%, that to FTLD 73.8%, the specificity to AD dementia equaled 91.7% in a comparison with the controls but only 26.2% with FTLD). Our results demonstrate the weakened ability of 17β-HSD10 to regulate cypD in the mitochondrial matrix probably via direct effects of amyloid β. Levels of 17β-HSD10–cypD complexes in cerebrospinal fluid seem to be the very sensitive indicator of mitochondrial dysfunction observed in neurodegeneration but unfortunately not specific to AD pathology. We do not recommend it as the new biomarker of AD.

  相似文献   
35.
Inhibition of mPGES-1, the terminal enzyme in the arachidonic acid/COX pathway to regulate the production of pro-inflammatory prostaglandin PGE2, is considered an attractive new therapeutic target for safe and effective anti-inflammatory drugs. The discovery of a novel series of orally active, selective benzoxazole piperidinecarboxamides as mPGES-1 inhibitors is described. Structure–activity optimization of lead 5 with cyclohexyl carbinols resulted in compound 12, which showed excellent in vitro potency and selectivity against COX-2, and reasonable pharmacokinetic properties. Further SAR studies of the benzoxazole ring substituents lead to a novel series of highly potent compounds with improved PK profile, including 23, 26, and 29, which were effective in a carrageenan-stimulated guinea pig air pouch model of inflammation. Based on its excellent in vitro and in vivo pharmacological, pharmacokinetic and safety profile and ease of synthesis, compound 26 (PF-4693627) was advanced to clinical studies.  相似文献   
36.
37.
Flowering plants have strikingly distinct genomes, although they contain a similar suite of expressed genes. The diversity of genome structures and organization is largely due to variation in transposable elements (TEs) and whole-genome duplication (WGD) events. We review evidence that chromatin modifications and epigenetic regulation are intimately associated with TEs and likely play a role in mediating the effects of WGDs. We hypothesize that the current structure of a genome is the result of various TE bursts and WGDs and it is likely that the silencing mechanisms and the chromatin structure of a genome have been shaped by these events. This suggests that the specific mechanisms targeting chromatin modifications and epigenomic patterns may vary among different species. Many crop species have likely evolved chromatin-based mechanisms to tolerate silenced TEs near actively expressed genes. These interactions of heterochromatin and euchromatin are likely to have important roles in modulating gene expression and variability within species.  相似文献   
38.
Exaggerated male traits under sexual selection are often used for both competition and courtship, raising the question of whether ornaments evolved simultaneously for both functions, or if use in one context preceded use in another. Here, we apply a phylogenetic approach to study the evolution of ornamental dorsal fins in male poeciliid fish of the subgenera Mollienesia and Limia, which exhibit convergent development of an enlarged dorsal fin, and often direct erect‐fin displays to male and female conspecifics. Unlike prior categorical assessments of poeciliid adornments, we measure dorsal fin exaggeration with a continuous index of ornamentation. Phylogenetic logistic and generalized least squares regression analyses indicate that high index values are significantly associated with the use of two component postures of courtship and aggressive displays, dorsal fin erection and body curvature, but not with the presence of sexual dichromatism. Male displays initially evolved for male–male aggression in the common ancestor of Mollienesia and Limia, suggesting that this signal originated for competition, then became co‐opted for courtship. These results support the armament‐ornament hypothesis for evolution of exaggerated male traits, and are consistent with an evolutionary shift in the predominant mechanisms of sexual selection from intra‐ to intersexual.  相似文献   
39.
Demethylation of transposons can activate the expression of nearby genes and cause imprinted gene expression in the endosperm; this demethylation is hypothesized to lead to expression of transposon small interfering RNAs (siRNAs) that reinforce silencing in the next generation through transfer either into egg or embryo. Here we describe maize (Zea mays) maternal derepression of r1 (mdr1), which encodes a DNA glycosylase with homology to Arabidopsis thaliana DEMETER and which is partially responsible for demethylation of thousands of regions in endosperm. Instead of promoting siRNA expression in endosperm, MDR1 activity inhibits it. Methylation of most repetitive DNA elements in endosperm is not significantly affected by MDR1, with an exception of Helitrons. While maternally-expressed imprinted genes preferentially overlap with MDR1 demethylated regions, the majority of genes that overlap demethylated regions are not imprinted. Double mutant megagametophytes lacking both MDR1 and its close homolog DNG102 result in early seed failure, and double mutant microgametophytes fail pre-fertilization. These data establish DNA demethylation by glycosylases as essential in maize endosperm and pollen and suggest that neither transposon repression nor genomic imprinting is its main function in endosperm.

Demethylation by DNA glycosylases is important for endosperm development, but only a subset of the affected loci are imprinted, suggesting demethylation may have additional functions.

IN A NUTSHELL Background: In 1970, Jerry Kermicle reported that maize kernels could have dramatically different pigmentation depending on which parent the r1 gene is inherited from. This was the first discovery of many genomically imprinted genes that are selectively expressed from the maternal genome in endosperm. Later, Kermicle also discovered a mutant with poor maternal r1 expression. He hypothesized that the normal function of the mutated gene would be to derepress maternal r1; hence the name maternal depression of r1 (mdr1). The identify of mdr1 has remained unknown since then, but studies using Arabidopsis thaliana have revealed that DNA demethylation by enzymes called DNA glycosylases is important for expression of some maternally inherited genes in endosperm. Question: We wanted to identify the mdr1 gene. We hypothesized that mdr1 would reveal insights into molecular mechanisms of genomic imprinting in maize. Findings: We discovered that mdr1 encodes one of two DNA glycosylases with high expression in endosperm. We found that at least one of the two must be functional for endosperm to develop normally, but the one encoded by mdr1 is expressed higher. Surprisingly, most of the genes the mdr1 DNA glycosylase demethylates do not appear to be genomically imprinted, and about half the DNA it demethylates is not even near genes. These findings suggest that DNA glycosylases also have an undiscovered function unrelated to genomic imprinting in endosperm. Next steps: We want to know how specific regions in the genome are targeted for demethylation. What distinguishes these regions from other regions in endosperm? And what keeps them from being demethylated in other tissues? On the flip side, little is known about the effect of demethylation in endosperm, other than genomic imprinting. We want to know what effect DNA demethylation by DNA glycosylases has on chromatin structure and why it is important.  相似文献   
40.
Three patients (2 female, 1 male) with recurrent infection, granulocytosis, impaired pus formation, and/or delayed umbilical cord separation were identified. Assessments of polymorphonuclear leukocytes (PMN)/monocyte function in each patient revealed profound abnormalities of adherence and adherence-dependent functions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of their PMN lysates demonstrated a deficient or absent protein(s) of 138 kilodaltons (gp 138). Na3HB4 labeling demonstrated the absence of a major cell surface glycoprotein complex in each patient. Among parental and sibling PMN suspensions, functional assessments revealed no consistent abnormalities, although variably diminished gp138 was identified by SDS-PAGE and Na3HB4 labeling. Analysis by fluorescence-activated cell sorting and monoclonal antibodies (MAb) to LFA-1 alpha, OKM1 alpha, and their common beta subunit demonstrated a severe or total deficiency of PMN/monocyte surface expression of each protein among all patients; intermediate values were observed for parental and affected sibling suspensions, findings consistent with an autosomal recessive mode of inheritance for this disorder. Cell surface labeling (125I) and immunoprecipitation with the same MAb demonstrated the absence of these glycoproteins in addition to a 150-kilodalton protein (p150,95). Identical abnormalities of surface expression of patient lymphocytes blast-transformed with phytohemagglutinin (PHA) or Epstein-Barr virus were demonstrated. Further, significantly diminished natural killer cell cytotoxicity was observed for each patient tested. PHA blast-transformed patient lymphocytes labeled with [35S]methionine demonstrated a total absence of the beta molecule but indicated the presence of an LFA-1 alpha precursor. These findings indicate that LFA-1 alpha synthesis and surface expression require beta association. It is concluded that impaired inflammatory function in this disorder is casually related to a heritable deficiency of critical "adhesive" leukocyte glycoproteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号