首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6095篇
  免费   610篇
  国内免费   1篇
  6706篇
  2023年   23篇
  2022年   49篇
  2021年   108篇
  2020年   42篇
  2019年   64篇
  2018年   55篇
  2017年   52篇
  2016年   120篇
  2015年   257篇
  2014年   281篇
  2013年   350篇
  2012年   400篇
  2011年   395篇
  2010年   292篇
  2009年   260篇
  2008年   406篇
  2007年   373篇
  2006年   392篇
  2005年   370篇
  2004年   371篇
  2003年   388篇
  2002年   324篇
  2001年   100篇
  2000年   61篇
  1999年   93篇
  1998年   109篇
  1997年   71篇
  1996年   68篇
  1995年   58篇
  1994年   48篇
  1993年   61篇
  1992年   59篇
  1991年   48篇
  1990年   50篇
  1989年   45篇
  1988年   44篇
  1987年   37篇
  1986年   43篇
  1985年   45篇
  1984年   29篇
  1983年   32篇
  1982年   28篇
  1981年   33篇
  1980年   27篇
  1979年   16篇
  1978年   17篇
  1977年   18篇
  1974年   12篇
  1973年   14篇
  1972年   11篇
排序方式: 共有6706条查询结果,搜索用时 15 毫秒
71.
UDP-GlcNAc: Man1-6R (1-2)-N-acetylglucosaminyltransferase II (GlcNAc-T II; EC 2.4.1.143) is a key enzyme in the synthesis of complexN-glycans. We have tested a series of synthetic analogues of the substrate Man1-6(GlcNAc1-2Man1-3)Man-O-octyl as substrates and inhibitors for rat liver GlcNAc-T II. The enzyme attachesN-acetylglucosamine in 1-2 linkage to the 2-OH of the Man1-6 residue. The 2-deoxy analogue is a competitive inhibitor (K i=0.13mm). The 2-O-methyl compound does not bind to the enzyme presumably due to steric hindrance. The 3-, 4- and 6-OH groups are not essential for binding or catalysis since the 3-, 4- and 6-deoxy and -O-methyl derivatives are all good substrates. Increasing the size of the substituent at the 3-position to pentyl and substituted pentyl groups causes competitive inhibition (K i=1.0–2.5mm). We have taken advantage of this effect to synthesize two potentially irreversible GlcNAc-T II inhibitors containing a photolabile 3-O-(4,4-azo)pentyl group and a 3-O-(5-iodoacetamido)pentyl group respectively. The data indicate that none of the hydroxyls of the Man1-6 residue are essential for binding although the 2- and 3-OH face the catalytic site of the enzyme. The 4-OH group of the Man-O-octyl residue is not essential for binding or catalysis since the 4-deoxy derivative is a good substrate; the 4-O-methyl derivative does not bind. This contrasts with GlcNAc-T I which cannot bind to the 4-deoxy-Man- substrate analogue. The data are compatible with our previous observations that a bisectingN-acetylglucosamine at the 4-OH position prevents both GlcNAc-T I and GlcNAc-T II catalysis. However, in the case of GlcNAc-T II, the bisectingN-acetylglucosamine prevents binding due to steric hindrance rather than to removal of an essential OH group. The 3-OH of the Man1-3 is an essential group for GlcNAc-T II since the 3-deoxy derivative does not bind to the enzyme. The trisaccharide GlcNAc1-2Man1-3Man-O-octyl is a good inhibitor (K i=0.9mm). The above data together with previous studies indicate that binding of the GlcNAc1-2Man1-3Man- arm of the branched substrate to the enzyme is essential for catalysis. Abbreviations: GlcNAc-T I, UDP-GlcNAc:Man1-3R (1-2)-N-acetylglucosaminyltransferase I (EC 2.4.1.101); GlcNAc-T II, UDP-GlcNAc:Man1-6R (1-2)-N-acetylglucosaminyltransferase II (EC 2.4.1.143); MES, 2-(N-morpholino)ethane sulfonic acid monohydrate.  相似文献   
72.
As part of the DNA Sequencing Research Group of the Association of Biomolecular Resource Facilities, we have tested the reproducibility of the Roche/454 GS-FLX Titanium System at five core facilities. Experience with the Roche/454 system ranged from <10 to >340 sequencing runs performed. All participating sites were supplied with an aliquot of a common DNA preparation and were requested to conduct sequencing at a common loading condition. The evaluation of sequencing yield and accuracy metrics was assessed at a single site. The study was conducted using a laboratory strain of the Dutch elm disease fungus Ophiostoma novo-ulmi strain H327, an ascomycete, vegetatively haploid fungus with an estimated genome size of 30–50 Mb. We show that the Titanium System is reproducible, with some variation detected in loading conditions, sequencing yield, and homopolymer length accuracy. We demonstrate that reads shorter than the theoretical minimum length are of lower overall quality and not simply truncated reads. The O. novo-ulmi H327 genome assembly is 31.8 Mb and is comprised of eight chromosome-length linear scaffolds, a circular mitochondrial conti of 66.4 kb, and a putative 4.2-kb linear plasmid. We estimate that the nuclear genome encodes 8613 protein coding genes, and the mitochondrion encodes 15 genes and 26 tRNAs.  相似文献   
73.
Ero1p is the primary catalyst of disulfide bond formation in the yeast endoplasmic reticulum (ER). Ero1p contains a pair of essential disulfide bonds that participate directly in the electron transfer pathway from substrate thiol groups to oxygen. Remarkably, elimination of certain other Ero1p disulfides by mutation enhances enzyme activity. In particular, the C150A/C295A Ero1p mutant exhibits increased thiol oxidation in vitro and in vivo and interferes with redox homeostasis in yeast cells by hyperoxidizing the ER. Inhibitory disulfides of Ero1p are thus important for enzyme regulation. To visualize the differences between de-regulated and wild-type Ero1p, we determined the crystal structure of Ero1p C150A/C295A. The structure revealed local changes compared to the wild-type enzyme around the sites of mutation, but no conformational transitions within 25 Å of the active site were observed. To determine how the C150—C295 disulfide nonetheless participates in redox regulation of Ero1p, we analyzed using mass spectrometry the changes in Ero1p disulfide connectivity as a function of time after encounter with reducing substrates. We found that the C150—C295 disulfide sets a physiologically appropriate threshold for enzyme activation by guarding a key neighboring disulfide from reduction. This study illustrates the diverse and interconnected roles that disulfides can play in redox regulation of protein activity.  相似文献   
74.
Hydrothermal venting and the formation of carbonate chimneys in the Lost City hydrothermal field (LCHF) are driven predominantly by serpentinization reactions and cooling of mantle rocks, resulting in a highly reducing, high-pH environment with abundant dissolved hydrogen and methane. Phylogenetic and terminal restriction fragment length polymorphism analyses of 16S rRNA genes in fluids and carbonate material from this site indicate the presence of organisms similar to sulfur-oxidizing, sulfate-reducing, and methane-oxidizing Bacteria as well as methanogenic and anaerobic methane-oxidizing Archaea. The presence of these metabolic groups indicates that microbial cycling of sulfur and methane may be the dominant biogeochemical processes active within this ultramafic rock-hosted environment. 16S rRNA gene sequences grouping within the Methylobacter and Thiomicrospira clades were recovered from a chemically diverse suite of carbonate chimney and fluid samples. In contrast, 16S rRNA genes corresponding to the Lost City Methanosarcinales phylotype were found exclusively in high-temperature chimneys, while a phylotype of anaerobic methanotrophic Archaea (ANME-1) was restricted to lower-temperature, less vigorously venting sites. A hyperthermophilic habitat beneath the LCHF may be reflected by 16S rRNA gene sequences belonging to Thermococcales and uncultured Crenarchaeota identified in vent fluids. The finding of a diverse microbial ecosystem supported by the interaction of high-temperature, high-pH fluids resulting from serpentinization reactions in the subsurface provides insight into the biogeochemistry of what may be a pervasive process in ultramafic subseafloor environments.  相似文献   
75.
Three patients (2 female, 1 male) with recurrent infection, granulocytosis, impaired pus formation, and/or delayed umbilical cord separation were identified. Assessments of polymorphonuclear leukocytes (PMN)/monocyte function in each patient revealed profound abnormalities of adherence and adherence-dependent functions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of their PMN lysates demonstrated a deficient or absent protein(s) of 138 kilodaltons (gp 138). Na3HB4 labeling demonstrated the absence of a major cell surface glycoprotein complex in each patient. Among parental and sibling PMN suspensions, functional assessments revealed no consistent abnormalities, although variably diminished gp138 was identified by SDS-PAGE and Na3HB4 labeling. Analysis by fluorescence-activated cell sorting and monoclonal antibodies (MAb) to LFA-1 alpha, OKM1 alpha, and their common beta subunit demonstrated a severe or total deficiency of PMN/monocyte surface expression of each protein among all patients; intermediate values were observed for parental and affected sibling suspensions, findings consistent with an autosomal recessive mode of inheritance for this disorder. Cell surface labeling (125I) and immunoprecipitation with the same MAb demonstrated the absence of these glycoproteins in addition to a 150-kilodalton protein (p150,95). Identical abnormalities of surface expression of patient lymphocytes blast-transformed with phytohemagglutinin (PHA) or Epstein-Barr virus were demonstrated. Further, significantly diminished natural killer cell cytotoxicity was observed for each patient tested. PHA blast-transformed patient lymphocytes labeled with [35S]methionine demonstrated a total absence of the beta molecule but indicated the presence of an LFA-1 alpha precursor. These findings indicate that LFA-1 alpha synthesis and surface expression require beta association. It is concluded that impaired inflammatory function in this disorder is casually related to a heritable deficiency of critical "adhesive" leukocyte glycoproteins.  相似文献   
76.
Abstract— l -DOPA or d -amphetamine administration disaggregates brain polyribosomes in animals maintained in an environment warm enough (26°C) so that the drugs concurrently elevate their body temperatures to above 39°C. The production of equivalent hyperthermia (by keeping control rats at ambient temperatures of 40–44° C) does not cause similar disaggregation of brain polysomes. Hence, the role of hyperthermia in the drug-induced disaggregation is permissive.  相似文献   
77.
The hexosamine biosynthesis pathway (HBP) serves as a nutrient sensor and has been implicated in the development of type 2 diabetes. We previously demonstrated that fatty acid oxidation was enhanced in transgenic mouse adipocytes, wherein the rate-limiting enzyme of the HBP, glutamine:fructose-6-phosphate amidotransferase (GFA), was overexpressed. To explore the molecular mechanism of the HBP-induced fatty acid oxidation in adipocytes, we studied AMP-activated protein kinase (AMPK), an energy sensor that stimulates fatty acid oxidation by regulating acetyl-CoA carboxylase (ACC) activity. Phosphorylation and activity of AMPK were increased in transgenic fat pads and in 3T3L1 adipocytes treated with glucosamine to stimulate hexosamine flux. Glucosamine also stimulated phosphorylation of ACC and fatty acid oxidation in 3T3L1 adipocytes, and these stimulatory effects were diminished by adenovirus-mediated expression of a dominant negative AMPK in 3T3L1 adipocytes. Conversely, blocking the HBP with a GFA inhibitor reduced AMPK activity, ACC phosphorylation, and fatty acid oxidation. These changes are not explained by alterations in the cellular AMP/ATP ratio. Further demonstrating that AMPK is regulated by the HBP, we found that AMPK was recognized by succinylated wheat germ agglutinin, which specifically binds O-GlcNAc. The levels of AMPK in succinylated wheat germ agglutinin precipitates correlated with hexosamine flux in mouse fat pads and 3T3L1 adipocytes. Moreover, removal of O-GlcNAc by hexosaminidase reduced AMPK activity. We conclude that chronically high hexosamine flux stimulates fatty acid oxidation by activating AMPK in adipocytes, in part through O-linked glycosylation.  相似文献   
78.
Agonist-promoted desensitization of G-protein-coupled receptors results in partial uncoupling of receptor from cognate G-protein, a process that provides for rapid adaptation to the signaling environment. This property plays important roles in physiologic and pathologic processes as well as therapeutic efficacy. However, coupling is also influenced by polymorphic variation, but the relative impact of these two mechanisms on signal transduction is not known. To determine this we utilized recombinant cells expressing the human beta(1)-adrenergic receptor (beta(1)AR) or a gain-of-function polymorphic variant (beta(1)AR-Arg(389)), and the beta(2)-adrenergic receptor (beta(2)AR) or a loss-of-function polymorphic receptor (beta(2)AR-Ile(164)). Adenylyl cyclase activities were determined with multiple permutations of the possible states of the receptor: genotype, basal, or agonist stimulated and with or without agonist pre-exposure. For the beta(1)AR, the enhanced function of the Arg(389) receptor underwent less agonist-promoted desensitization compared with its allelic counterpart. Indeed, the effect of polymorphic variation on absolute adenylyl cyclase activities was such that desensitized beta(1)AR-Arg(389) signaling was equivalent to non-desensitized wild-type beta(1)AR; that is, the genetic component had as much impact as desensitization on receptor coupling. In contrast, the enhanced signaling of wild-type beta(2)AR underwent less desensitization compared with beta(2)AR-Ile(164), thus the heterogeneity in absolute signaling was markedly broadened by this polymorphism. Inverse agonist function was not affected by polymorphisms of either subtype. A general model is proposed whereby up to 10 levels of signaling by G-protein-coupled receptors can be present based on the influences of desensitization and genetic variation on coupling.  相似文献   
79.
We present evidence that the 5-hydroxytryptamine(1A) (5-HT(1A)) receptor antagonist, N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl}-N-(2-pyridinyl)cyclohexanecarboxamide (WAY-100635), can induce receptor internalization in a human (h)5-HT(1A) receptor Chinese hamster ovary (CHO-K1) cell system. Exposure of h5-HT(1A) CHO cells to WAY-100635 decreased the cell-surface h5-HT(1A) receptor density in a way that was both time (24-72 h) and concentration (1-100 nm) dependent.[(3)H]WAY-100635 and [(3)H]8-hydroxy-dipropylaminotetralin ([(3)H]8-OH-DPAT) saturation analyses demonstrated a significant reduction (50-60%) in total h5-HT(1A) receptor number in the WAY-100635-treated (100 nm; 72 h) compared with control cells. In WAY-100635-treated cells, the 8-OH-DPAT-mediated inhibition of forskolin (FSK)-stimulated cAMP accumulation was right-shifted and the maximal inhibitory response of 8-OH-DPAT was impaired compared with control cells. Similar results were obtained for 8-OH-DPAT-mediated Ca(2+) mobilization after WAY-100635 treatment. h5-HT(1A) receptors labeled with [(3)H]WAY-100635, as well as [(3)H]4-(2'-Methoxy)-phenyl-1-[2'-(N-2'-pyridinyl)-p-fluorobenzamido]ethyl-piperazine (MPPF), exhibited a time-dependent rate of cellular internalization that was blocked by endocytotic suppressors and was pertussis-toxin insensitive. In contrast, quantitative autoradiographic studies demonstrated that chronic treatment of rats with WAY-100635 for two weeks produced a region-specific increase in the 5-HT(1A) receptor density. In conclusion, prolonged exposure of an h5-HT(1A) cell-based system to the 5-HT(1A) antagonist, WAY-100635, induced a paradoxical internalization of cell surface receptor resulting in depressed functional activity. This suggests that an antagonist can influence 5-HT(1A) receptor recycling in vitro differently to in vivo regulatory conditions.  相似文献   
80.
Understanding the links between breeding and wintering areas of migratory species has important ecological and conservation implications. Recently, stable isotope technology has been used to further our understanding. Stable isotope ratios vary geographically with a range of biogeochemical factors and isotope profiles in organisms reflect those in their food and environment. For inert tissues like feathers, isotope profiles reflect the environment in which they were formed. Following large-scale habitat destruction, the globally threatened aquatic warbler Acrocephalus paludicola has a fragmented breeding population across central Europe, largely in Belarus, Poland and Ukraine. The species sub-Saharan African wintering grounds have not yet been discovered, and this significantly hampers conservation efforts. Aquatic warblers grow their flight feathers on their wintering grounds, and we analysed stable isotope ratios (15N, 13C, D) in rectrices of adults from six main breeding sites (subpopulations) across Europe to determine whether different breeding subpopulations formed a single mixed population on the wintering grounds. 15N varies considerably with dietary trophic level and environmental factors, and D with the D in rainfall; neither varied between aquatic warbler subpopulations. Uniform feather 15N signatures suggest no major variation in dietary trophic level during feather formation. High variance and inter-annual differences in mean D values hinder interpretation of these data. Significant differences in mean 13C ratios existed between subpopulations. We discuss possible interpretations of this result, and consider differences in moulting latitude of different subpopulations to be the most parsimonious. 13C in plants and animals decreases with latitude, along a steep gradient in sub-Saharan Africa. Birds from the most north-westerly breeding subpopulation (Karsibor, Poland) had significantly lower variance in 13C and 15N than birds from all other sites, suggesting either that birds from Karsibor are less geographically dispersed during moult, or moult in an area with less isotopic heterogeneity. Mean 13C signatures from winter-grown feathers of different subpopulations were positively correlated with the latitude and longitude of breeding sites, suggesting a strong relationship between European breeding and African winter moulting latitudes. The use of stable isotopes provides novel insights into migratory connectivity and migration patterns in this little-known threatened species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号