首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   24篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2015年   5篇
  2014年   8篇
  2013年   5篇
  2012年   9篇
  2011年   5篇
  2010年   7篇
  2009年   4篇
  2008年   8篇
  2007年   7篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   6篇
  2001年   8篇
  2000年   5篇
  1999年   7篇
  1998年   3篇
  1997年   6篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1971年   3篇
  1970年   1篇
  1968年   2篇
  1958年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
51.
52.
In Escherichia coli, the SecB/SecA branch of the Sec pathway and the twin-arginine translocation (Tat) pathway represent two alternative possibilities for posttranslational translocation of proteins across the cytoplasmic membrane. Maintenance of pathway specificity was analyzed using a model precursor consisting of the mature part of the SecB-dependent maltose-binding protein (MalE) fused to the signal peptide of the Tat-dependent TorA protein. The TorA signal peptide selectively and specifically directed MalE into the Tat pathway. The characterization of a spontaneous TorA signal peptide mutant (TorA*), in which the two arginine residues in the c-region had been replaced by one leucine residue, showed that the TorA*-MalE mutant precursor had acquired the ability for efficiently using the SecB/SecA pathway. Despite the lack of the "Sec avoidance signal," the mutant precursor was still capable of using the Tat pathway, provided that the kinetically favored Sec pathway was blocked. These results show that the h-region of the TorA signal peptide is, in principle, sufficiently hydrophobic for Sec-dependent protein translocation, and therefore, the positively charged amino acid residues in the c-region represent a major determinant for Tat pathway specificity. Tat-dependent export of TorA-MalE was significantly slower in the presence of SecB than in its absence, showing that SecB can bind to this precursor despite the presence of the Sec avoidance signal in the c-region of the TorA signal peptide, strongly suggesting that the function of the Sec avoidance signal is not the prevention of SecB binding; rather, it must be exerted at a later step in the Sec pathway.  相似文献   
53.
Nehrke  K; Hagen  FK; Tabak  LA 《Glycobiology》1998,8(4):367-371
Multiple isoforms of UDP-GalNAc:polypeptide N-acetylgalactosaminyl- transferase (ppGaNTase) have been cloned and expressed from a variety of organisms. In general, these isoforms display different patterns of tissue-specific expression, but exhibit overlapping substrate specificities, in vitro . A peptide substrate, derived from the sequence of the V3 loop of the HIV gp120 protein (HIV peptide), has previously been shown to be glycosylated in vitro exclusively by the ppGaNTase-T3 (Bennett et al. , 1996). To determine if this isoform- specificity is maintained in vivo , we have examined the glycosylation of this substrate when it is expressed as a reporter peptide (rHIV) in a cell background (COS7 cells) which lacks detectable levels of the ppGaNTase-T3. Glycosylation of rHIV was greatly increased by coexpression of a recombinant ppGaNTase-T3. Overexpression of ppGaNTase- T1 yielded only partial glycosylation of the reporter. We have also determined that the introduction of a proline residue at the +3 position flanking the potential glycosylation site eliminated ppGaNTase- T3 selectivity toward rHIV observed both in vivo and in vitro .   相似文献   
54.
Budding and fission of vesicles.   总被引:10,自引:5,他引:5       下载免费PDF全文
We report on budding and fission of protein-free vesicles swollen from a natural lipid mixture of bovine brain sphingomyelins. Budding was induced by increasing the area-to-volume ratio through heating. Morphological changes were monitored by phase contrast microscopy and correlated with the thermal behavior of the bilayer by differential scanning calorimetry. Freeze fracture electron microscopy revealed that budding and fission are not restricted to giant vesicles but also occur on length scales relevant for cellular processes. We also observed osmotically induced budding and fission in mixtures of dimyristoyl phosphatidylcholine with cholesterol. We find that these shape transitions are driven by liquid/gel domain formation and/or coupling of the spontaneous curvature of the membrane to the local lipid composition. Our results provide evidence that coat proteins are not necessary for budding and fission of vesicles. The physics of the lipid bilayer is rich enough to explain the observed behavior.  相似文献   
55.
The design of vaccines against highly mutable pathogens, such as HIV and influenza, requires a detailed understanding of how the adaptive immune system responds to encountering multiple variant antigens (Ags). Here, we describe a multiscale model of B cell receptor (BCR) affinity maturation that employs actual BCR nucleotide sequences and treats BCR/Ag interactions in atomistic detail. We apply the model to simulate the maturation of a broadly neutralizing Ab (bnAb) against HIV. Starting from a germline precursor sequence of the VRC01 anti-HIV Ab, we simulate BCR evolution in response to different vaccination protocols and different Ags, which were previously designed by us. The simulation results provide qualitative guidelines for future vaccine design and reveal unique insights into bnAb evolution against the CD4 binding site of HIV. Our model makes possible direct comparisons of simulated BCR populations with results of deep sequencing data, which will be explored in future applications.  相似文献   
56.
Eukaryotic organisms use conserved checkpoint mechanisms that regulate Cdk1 by inhibitory phosphorylation to prevent mitosis from interfering with DNA replication or repair. In metazoans, this checkpoint mechanism is also used for coordinating mitosis with dynamic developmental processes. Inhibitory phosphorylation of Cdk1 is catalyzed by Wee1 kinases that phosphorylate tyrosine 15 (Y15) and dual-specificity Myt1 kinases found only in metazoans that phosphorylate Y15 and the adjacent threonine (T14) residue. Despite partially redundant roles in Cdk1 inhibitory phosphorylation, Wee1 and Myt1 serve specialized developmental functions that are not well understood. Here, we expressed wild-type and phospho-acceptor mutant Cdk1 proteins to investigate how biochemical differences in Cdk1 inhibitory phosphorylation influence Drosophila imaginal development. Phosphorylation of Cdk1 on Y15 appeared to be crucial for developmental and DNA damage-induced G2-phase checkpoint arrest, consistent with other evidence that Myt1 is the major Y15-directed Cdk1 inhibitory kinase at this stage of development. Expression of non-inhibitable Cdk1 also caused chromosome defects in larval neuroblasts that were not observed with Cdk1(Y15F) mutant proteins that were phosphorylated on T14, implicating Myt1 in a novel mechanism promoting genome stability. Collectively, these results suggest that dual inhibitory phosphorylation of Cdk1 by Myt1 serves at least two functions during development. Phosphorylation of Y15 is essential for the premitotic checkpoint mechanism, whereas T14 phosphorylation facilitates accumulation of dually inhibited Cdk1–Cyclin B complexes that can be rapidly activated once checkpoint-arrested G2-phase cells are ready for mitosis.  相似文献   
57.
The role of among-species gene flow in eukaryotic evolution remains controversial. Putative hybrid lineages are common in water fleas, but their ecological success is often associated with polyploidy and the production of asexual propagules. Advanced hybrid lineages with sexual propagules are expected to be geographically restricted because their successful dispersal is contingent on overcoming fertility complications, assimilation by parent taxa, and competition with parent taxa. Here we provide evidence that a diploid lineage of Daphnia has been formed by introgression between distantly related species and attained a broad distribution (Nearctic) despite its requirement for sexual propagules. The evidence is based on geographical discordance, phylogenetic discordance, recombinant genotypes and additive genotypes of the nuclear internal transcribed spacer regions (ITS) and mitochondrial DNA. Additive genotypes also provided evidence of hybridization between introduced European Daphnia and North American Daphnia. We argue that the unique biology of Holarctic lacustrine water fleas and the spatial separation of lineages during Pleistocene glaciation have promoted hybridization and its evolutionary consequences.  相似文献   
58.
We report details of metabolic profiles for small intestinal samples obtained using high-resolution magic-angle-spinning (HRMAS) (1)H NMR spectroscopy. Intact samples of jejunum and ileum from male Long Evans rats were analyzed on a 600 MHz spectrometer using standard one and two-dimensional (1)H NMR spectroscopic pulse sequences. The metabolic profiles of ileum and jejunum predominantly comprised a number of amino acids, lipids, glycerophosphocholine (GPC), choline, creatine, and ethanol, a number of carboxylic acids including acetate and lactate, and nucleoside bases including cytosine, isocytosine, and uracil. Principal component analysis (PCA) was applied to these NMR data to characterize the biochemical differences between jejunum and ileum tissues. Compared with ileum, jejunum contained higher levels of lipids, GPC, choline, lactate and creatinine, but lower levels of amino acids and acetate. In addition, the age dependence of the biochemical composition of intestinal tissues from young rats (15, 36 days and 3-4 months old) was studied. In general, levels of lipids, lactate, taurine and creatinine were positively correlated with age while amino acids and GPC decreased in the older age group. This study will provide a metabolic reference for further studies assessing the metabolic consequences of nutrition, stress and gut microbiota on intestinal composition.  相似文献   
59.
Fructose-6-phosphate aldolase from Escherichia coli is a member of a small enzyme subfamily (MipB/TalC family) that belongs to the class I aldolases. The three-dimensional structure of this enzyme has been determined at 1.93 A resolution by single isomorphous replacement and tenfold non-crystallographic symmetry averaging and refined to an R-factor of 19.9% (R(free) 21.3%). The subunit folds into an alpha/beta barrel, with the catalytic lysine residue on barrel strand beta 4. It is very similar in overall structure to that of bacterial and mammalian transaldolases, although more compact due to extensive deletions of additional secondary structural elements. The enzyme forms a decamer of identical subunits with point group symmetry 52. Five subunits are arranged as a pentamer, and two ring-like pentamers pack like a doughnut to form the decamer. A major interaction within the pentamer is through the C-terminal helix from one monomer, which runs across the active site of the neighbouring subunit. In classical transaldolases, this helix folds back and covers the active site of the same subunit and is involved in dimer formation. The inter-subunit helix swapping appears to be a major determinant for the formation of pentamers rather than dimers while at the same time preserving importing interactions of this helix with the active site of the enzyme. The active site lysine residue is covalently modified, by forming a carbinolamine with glyceraldehyde from the crystallisation mixture. The catalytic machinery is very similar to that of transaldolase, which together with the overall structural similarity suggests that enzymes of the MipB/TALC subfamily are evolutionary related to the transaldolase family.  相似文献   
60.
The crystal structure of gluconate kinase from Escherichia coli has been determined to 2.0 A resolution by X-ray crystallography. The three-dimensional structure was solved by multi-wavelength anomalous dispersion, using a crystal of selenomethionine-substituted enzyme. Gluconate kinase is an alpha/beta structure consisting of a twisted parallel beta-sheet surrounded by alpha-helices with overall topology similar to nucleoside monophosphate (NMP) kinases, such as adenylate kinase. In order to identify residues involved in substrate binding and catalysis, structures of binary complexes with ATP, the ATP analogue adenosine 5'-(beta,gamma-methylene) triphosphate and the product, gluconate-6-phosphate have been determined. Significant conformational changes are induced upon binding of ATP to the enzyme. The largest changes involve a hinge-bending motion of the NMP(bind) part and a motion of the LID with adjacent helices, which opens the cavity to the second substrate, gluconate. Opening of the active site cleft upon ATP binding is the opposite of what has been observed in the NMP kinase family so far, which usually close their active site to prevent fortuitous hydrolysis of ATP. The conformational change positions the side-chain of Arg120 to stack with the purine ring of ATP and the side-chain of Arg124 is shifted to interact with the alpha-phosphate in ATP, at the same time protecting ATP from solvent water. The beta and gamma-phosphate groups of ATP bind in the predicted P-loop. A conserved lysine side-chain interacts with the gamma-phosphate group, and might promote phosphoryl transfer. Gluconate-6-phosphate binds with its phosphate group in a similar position as the gamma-phosphate of ATP, consistent with inline phosphoryl transfer. The gluconate binding-pocket in GntK is located in a different position than the nucleoside binding-site usually found in NMP kinases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号