首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   19篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2015年   5篇
  2014年   4篇
  2013年   7篇
  2012年   4篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2008年   4篇
  2007年   7篇
  2006年   4篇
  2005年   6篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   5篇
  1999年   8篇
  1998年   11篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
51.
A mendelian mutant of the unicellular green alga Chlamydomonas reinhardii has been isolated which is deficient in carbonic anhydrase (EC 4.2.1.1) activity. This mutant strain, designated ca-1-12-1C (gene locus ca-1), was selected on the basis of a high CO2 requirement for photoautotrophic growth. Photosynthesis by the mutant at atmospheric CO2 concentration was very much reduced compared to wild type and, unlike wild type, was strongly inhibited by O2. In contrast to a CO2 compensation concentration of near zero in wild type at all O2 concentrations examined, the mutant exhibited a high, O2-stimulated CO2 compensation concentration. Evidence of photorespiratory activity in the mutant but not in wild type was obtained from the analysis of photosynthetic products in the presence of 14CO2. At air levels of CO2 and O2, the mutant synthesized large amounts of glycolate, while little glycolate was synthesized by wild type under identical conditions. Both mutant and wild type strains formed only small amounts of glycolate at saturating CO2 concentration. At ambient CO2, wild type accumulated inorganic carbon to a concentration several-fold higher than that in the suspension medium. The mutant cells accumulated inorganic carbon internally to a concentration 6-fold greater than found in wild type, yet photosynthesis was CO2 limited. The mutant phenotype was mimicked by wild type cells treated with ethoxyzolamide, an inhibitor of carbonic anhydrase activity. These observations indicate a requirement for carbonic anhydrase-catalyzed dehydration of bicarbonate in maintaining high internal CO2 concentrations and high photosynthesis rates. Thus, in wild type cells, carbonic anhydrase rapidly converts the bicarbonate taken up to CO2, creating a high internal CO2 concentration which stimulates photosynthesis and suppresses photorespiration. In mutant cells, bicarbonate is taken up rapidly but, because of a carbonic anhydrase deficiency, is not dehydrated at a rate sufficiently rapid to maintain a high internal CO2 concentration.  相似文献   
52.
53.

Background

Mutations in a small region of the rpoB gene are responsible for most rifamycin resistance in Mycobacterium tuberculosis. In this study we have sequentially generated resistant strains to first rifampicin and then rifabutin. Portions of the rpoB gene were sequenced from 131 randomly selected mutants. Second round selection resulted in a changed frequency of specific mutations.

Methods

Mycobacterium tuberculosis (strain Mtb72) rifamycin resistant mutants were selected in vitro with either rifampicin or rifabutin. One mutant R190 (rpoB S522L) selected with rifampicin had a rifampicin MIC of 32 μg/ml but remained sensitive to rifabutin (MIC<0.8 μg/ml). This mutant was subjected to a second round of selection with rifabutin.

Results

All 105 first round resistant mutants derived from the parent strain (Mtb72) screened acquired mutations within the 81 bp rpoB hotspot. When the rifampicin resistant but rifabutin sensitive S522L mutant was subjected to a second round of selection, single additional rpoB mutations were identified in 24 (92%) of 26 second round mutants studied, but 14 (54%) of these strains contained mutations outside the 81 bp hotspot (codons 144, 146, 148, 505). Additionally, spontaneous rifabutin resistant mutants were produced at >10 times the frequency by the S522L mutant than the parent strain.

Conclusion

First round selection of mutation S522L with rifampicin increased the frequency and changed the spectrum of mutations identified after selection with rifabutin.  相似文献   
54.
Comparison of subunit sequences and X-ray crystal structures of ribulose-1,5-bisphosphate carboxylase/oxygenase indicates that the loop between beta-strands A and B of the small subunit is one of the most variable regions of the holoenzyme. In prokaryotes and nongreen algae, the loop contains 10 residues. In land plants and green algae, the loop is comprised of approximately 22 and 28 residues, respectively. Previous studies indicated that the longer betaA-betaB loop was required for the assembly of cyanobacterial small subunits with plant large subunits in isolated chloroplasts. In the present study, chimeric small subunits were constructed by replacing the loop of the green alga Chlamydomonas reinhardtii with the sequences of Synechococcus or spinach. When these engineered genes were transformed into a Chlamydomonas mutant that lacks small-subunit genes, photosynthesis-competent colonies were recovered, indicating that loop size is not essential for holoenzyme assembly. Whereas the Synechococcus loop causes decreases in carboxylation V(max), K(m)(O(2)), and CO(2)/O(2) specificity, the spinach loop causes complementary decreases in carboxylation V(max), K(m)(O(2)), and K(m)(CO(2)) without a change in specificity. X-ray crystal structures of the engineered proteins reveal remarkable similarity between the introduced betaA-betaB loops and the respective loops in the Synechococcus and spinach enzymes. The side chains of several large-subunit residues are altered in regions previously shown by directed mutagenesis to influence CO(2)/O(2) specificity. Differences in the catalytic properties of divergent Rubisco enzymes may arise from differences in the small-subunit betaA-betaB loop. This loop may be a worthwhile target for genetic engineering aimed at improving photosynthetic CO(2) fixation.  相似文献   
55.
Moran C  Catterall CP  Green RJ  Olsen MF 《Oecologia》2004,141(4):584-595
Seed dispersal plays a critical role in rainforest regeneration patterns, hence loss of avian seed dispersers in fragmented landscapes may disrupt forest regeneration dynamics. To predict whether or not a plant will be dispersed in fragmented forests, it is necessary to have information about frugivorous bird distribution and dietary composition. However, specific dietary information for frugivorous birds is often limited. In such cases, information on the seed-crushing behaviour, gape width and relative dietary dominance by fruit may be used to describe functional groups of bird species with respect to their potential to disperse similar seeds. We used this information to assess differences in the seed dispersal potential of frugivorous bird assemblages in a fragmented rainforest landscape of southeast Queensland, Australia. The relative abundance of frugivorous birds was surveyed in extensive, remnant and regrowth rainforest sites (16 replicates of each). Large-gaped birds with mixed diets and medium-gaped birds with fruit-dominated diets were usually less abundant in remnants and regrowth than in continuous forest. Small-gaped birds with mixed diets and birds with fruit as a minor dietary component were most abundant in regrowth. We recorded a similar number of seed-crushing birds and large-gaped birds with fruit-dominated diets across site types. Bird species that may have the greatest potential to disperse a large volume and wide variety of plants, including large-seeded plants, tended to be less abundant outside of extensive forests, although one species, the figbird Sphecotheres viridis, was much more abundant in these areas. The results suggest that the dispersal of certain plant taxa would be limited in this fragmented landscape, although the potential for the dispersal of large-seeded plants may remain, despite the loss of several large-gaped disperser species.  相似文献   
56.
Evolution of the Sry genes   总被引:4,自引:3,他引:1  
Existing DNA sequence data on the Sry gene, the mammalian sex- determining locus in the Y chromosome, were analyzed for primates, rodents, and bovids. In all three taxonomic groups, the terminal sequences evolved faster than the HMG (high mobility group) boxes, and this applies both to synonymous (Ks) and nonsynonymous (Ka) nucleotide substitutions. Similar intragenic correlation between synonymous and nonsynonymous substitution rates was not found either in other mammalian genes that contain a conservative box (Sox, Msx) or in the MADS-box genes of plants. The rate of nonsynonymous substitutions exceeds significantly that of synonymous substitutions in the terminal Sry sequences of apes. We did not find good support for the hypothesis that the high evolutionary rate of Sry would be associated with a promiscuous mating system.   相似文献   
57.
J Marc  CL Granger  J Brincat  DD Fisher  Th Kao  AG McCubbin    RJ Cyr 《The Plant cell》1998,10(11):1927-1940
Microtubules influence morphogenesis by forming distinct geometrical arrays in the cell cortex, which in turn affect the deposition of cellulose microfibrils. Although many chemical and physical factors affect microtubule orientation, it is unclear how cortical microtubules in elongating cells maintain their ordered transverse arrays and how they reorganize into new geometries. To visualize these reorientations in living cells, we constructed a microtubule reporter gene by fusing the microtubule binding domain of the mammalian microtubule-associated protein 4 (MAP4) gene with the green fluorescent protein (GFP) gene, and transient expression of the recombinant protein in epidermal cells of fava bean was induced. The reporter protein decorates microtubules in vivo and binds to microtubules in vitro. Confocal microscopy and time-course analysis of labeled cortical arrays along the outer epidermal wall revealed the lengthening, shortening, and movement of microtubules; localized microtubule reorientations; and global microtubule reorganizations. The global microtubule orientation in some cells fluctuates about the transverse axis and may be a result of a cyclic self-correcting mechanism to maintain a net transverse orientation during cellular elongation.  相似文献   
58.
Chlamydomonas reinhardtii mutant 76-5EN was recovered as a light-sensitive, acetate-requiring strain that failed to complement a chloroplast structural gene mutant of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39). Further genetic analysis revealed that the new mutation was inherited in a mendelian pattern, indicating that it resides within the nucleus. The 76-5EN mutant lacks Rubisco holoenzyme but has wild-type levels of whole-chain electron transport activity and chlorophyll. During a 1-min pulse labeling with 35SO42-, little or no Rubisco large-subunit synthesis occurred in the mutant. Nuclear-encoded small subunits were synthesized to a normal level and were subsequently degraded. When analyzed by northern hybridization, the 76-5EN mutant was found to have a decreased level of large-subunit mRNA. Large-subunit mRNA synthesis also appeared to be reduced during a 10-min pulse labeling with [32P]orthophosphate, but the labeled mRNA was stable during a 1-h chase. These results indicate that a nuclear gene mutation specifically disrupts the accumulation of large-subunit mRNA within the chloroplast. A deeper understanding of the nature of the 76-5EN gene may be useful for manipulating the expression of the agronomically important Rubisco enzyme.  相似文献   
59.
Mutants of the unicellular, green alga Chlamydomonas reinhardtii were recovered by screening for the absence of photoautotrophic growth at 35°C. Whereas nonconditional mutants required acetate for growth at both 25 and 35°C, the conditional mutants have normal photoautotrophic growth at 25°C. The conditional mutants consisted of two classes: (a) Temperature-sensitive mutants died under all growth conditions at 35°C, but (b) temperature-sensitive, acetate-requiring mutants were capable of heterotrophic growth at 35°C when supplied with acetate in the dark. The majority of mutants within the latter of these two classes had defects in photosynthetic functions. These defects included altered pigmentation, reduced whole-chain electron-transport activity, reduced ribulosebis-phosphate carboxylase activity, or pleiotropic alterations in a number of these photosynthetic components. Both nuclear and chloroplast mutants were identified, and a correlation between light-sensitive and photosynthesis-deficient phenotypes was observed.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号