首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   68篇
  2015年   4篇
  2014年   5篇
  2013年   4篇
  2012年   7篇
  2011年   6篇
  2010年   7篇
  2009年   4篇
  2008年   8篇
  2007年   7篇
  2006年   10篇
  2005年   9篇
  2004年   10篇
  2003年   17篇
  2002年   5篇
  2001年   9篇
  2000年   6篇
  1999年   3篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1994年   7篇
  1993年   3篇
  1992年   11篇
  1991年   9篇
  1990年   3篇
  1989年   5篇
  1988年   8篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   8篇
  1980年   3篇
  1979年   8篇
  1978年   4篇
  1977年   3篇
  1975年   5篇
  1974年   4篇
  1973年   4篇
  1972年   3篇
  1971年   3篇
  1970年   3篇
  1968年   4篇
  1966年   4篇
  1949年   3篇
  1943年   3篇
  1940年   4篇
  1932年   2篇
排序方式: 共有306条查询结果,搜索用时 265 毫秒
91.
92.
93.
94.
95.
Traffic through late endolysosomal compartments is regulated by sequential signaling of small G proteins of the Rab5 and Rab7 families. The Saccharomyces cerevisiae Vps-C protein complexes CORVET (class C core vacuole/endosome tethering complex) and HOPS (homotypic fusion and protein transport) interact with endolysosomal Rabs to coordinate their signaling activities. To better understand these large and intricate complexes, we performed interaction surveys to assemble domain-level interaction topologies for the eight Vps-C subunits. We identified numerous intersubunit interactions and up to six Rab-binding sites. Functional modules coordinate the major Rab interactions within CORVET and HOPS. The CORVET-specific subunits, Vps3 and Vps8, form a subcomplex and physically and genetically interact with the Rab5 orthologue Vps21. The HOPS-specific subunits, Vps39 and Vps41, also form a subcomplex. Both subunits bind the Rab7 orthologue Ypt7, but with distinct nucleotide specificities. The in vivo functions of four RING-like domains within Vps-C subunits were analyzed and shown to have distinct functions in endolysosomal transport. Finally, we show that the CORVET- and HOPS-specific subunits Vps3 and Vps39 bind the Vps-C core through a common region within the Vps11 C-terminal domain (CTD). Biochemical and genetic experiments demonstrate the importance of these regions, revealing the Vps11 CTD as a key integrator of Vps-C complex assembly, Rab signaling, and endosomal and lysosomal traffic.  相似文献   
96.
Breast tumor stratification by recurrence-risk is critical for deciding patient treatment. Here an approach combining cancer pathways microarray data complemented by RNA in situ hybridization (ISH) was investigated as a means for recurrence marker discovery and visualization in pathology specimens. LncRNA and mRNA expressions in breast carcinomas with low (n = 8) vs intermediate/high (n = 10) recurrence-scores as estimated by 21-gene assay and pathology review were compared by microarray assay. Tissue microarrays were prepared from breast carcinomas (n = 20) and ductal carcinoma in situ (DCIS) specimens (n = 84 patients) with known outcomes. Thirteen RNA ISH assays were performed: lncRNAs (BBC3-1, FER3, RAD21-AS1, ZEB1-2) and mRNAs (GLO1, GLTSCR2, TGFB1, TLR2) (implicated by the microarray data); MKI67; a pooled panel of recurrence-associated proliferation markers (BIRC5, Cyclin B1, MKI67, MYBL2, STK15); a pooled panel of non-proliferation recurrence-associated markers (CEACAM5, HTF9C, NDRG1, TP53, SLC7A5); and lncRNAs H19 and HOTAIR. Seven lncRNAs and 10 mRNAs showed significantly (P < .05) altered upregulation or downregulation by microarray assay: carcinoma RNA ISH staining did not mirror these patterns. HOTAIR staining was associated with a higher breast cancer recurrence score (P = .0152); qualitatively, H19 was massively expressed in a metaplastic triple negative breast carcinoma. Among the DCIS cohort, significant associations with multiple outcome variables were noted for TGFB1 and the non-proliferation panel (P-value range: .0001 to .047); proliferation panel staining showed an association with increasing DCIS grade (P = .0269) but not with outcomes. The findings support recurrence-risk estimation by the use of multi-marker panels that are representative of diverse cellular pathways rather than over-reliance on proliferation targets. H19, HOTAIR, and TGFB1 RNA ISH show potential for selective diagnostics.  相似文献   
97.
Monkeypox virus (MPXV) is an orthopoxvirus closely related to variola virus, the causative agent of smallpox. Human MPXV infection results in a disease that is similar to smallpox and can also be fatal. Two clades of MPXV have been identified, with viruses of the central African clade displaying more pathogenic properties than those within the west African clade. The monkeypox inhibitor of complement enzymes (MOPICE), which is not expressed by viruses of the west African clade, has been hypothesized to be a main virulence factor responsible for increased pathogenic properties of central African strains of MPXV. To gain a better understanding of the role of MOPICE during MPXV-mediated disease, we compared the host adaptive immune response and disease severity following intrabronchial infection with MPXV-Zaire (n = 4), or a recombinant MPXV-Zaire (n = 4) lacking expression of MOPICE in rhesus macaques (RM). Data presented here demonstrate that infection of RM with MPXV leads to significant viral replication in the peripheral blood and lungs and results in the induction of a robust and sustained adaptive immune response against the virus. More importantly, we show that the loss of MOPICE expression results in enhanced viral replication in vivo, as well as a dampened adaptive immune response against MPXV. Taken together, these findings suggest that MOPICE modulates the anti-MPXV immune response and that this protein is not the sole virulence factor of the central African clade of MPXV.  相似文献   
98.
99.
Wild-type zebrafish embryos swim away in response to tactile stimulation. By contrast, relatively relaxed mutants swim slowly due to weak contractions of trunk muscles. Electrophysiological recordings from muscle showed that output from the CNS was normal in mutants, suggesting a defect in the muscle. Calcium imaging revealed that Ca(2+) transients were reduced in mutant fast muscle. Immunostaining demonstrated that ryanodine and dihydropyridine receptors, which are responsible for Ca(2+) release following membrane depolarization, were severely reduced at transverse-tubule/sarcoplasmic reticulum junctions in mutant fast muscle. Thus, slow swimming is caused by weak muscle contractions due to impaired excitation-contraction coupling. Indeed, most of the ryanodine receptor 1b (ryr1b) mRNA in mutants carried a nonsense mutation that was generated by aberrant splicing due to a DNA insertion in an intron of the ryr1b gene, leading to a hypomorphic condition in relatively relaxed mutants. RYR1 mutations in humans lead to a congenital myopathy, multi-minicore disease (MmD), which is defined by amorphous cores in muscle. Electron micrographs showed minicore structures in mutant fast muscles. Furthermore, following the introduction of antisense morpholino oligonucleotides that restored the normal splicing of ryr1b, swimming was recovered in mutants. These findings suggest that zebrafish relatively relaxed mutants may be useful for understanding the development and physiology of MmD.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号