首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   68篇
  2015年   4篇
  2014年   5篇
  2013年   4篇
  2012年   7篇
  2011年   6篇
  2010年   7篇
  2009年   4篇
  2008年   8篇
  2007年   7篇
  2006年   10篇
  2005年   9篇
  2004年   10篇
  2003年   17篇
  2002年   5篇
  2001年   9篇
  2000年   6篇
  1999年   3篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1994年   7篇
  1993年   3篇
  1992年   11篇
  1991年   9篇
  1990年   3篇
  1989年   5篇
  1988年   8篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   8篇
  1980年   3篇
  1979年   8篇
  1978年   4篇
  1977年   3篇
  1975年   5篇
  1974年   4篇
  1973年   4篇
  1972年   3篇
  1971年   3篇
  1970年   3篇
  1968年   4篇
  1966年   4篇
  1949年   3篇
  1943年   3篇
  1940年   4篇
  1932年   2篇
排序方式: 共有306条查询结果,搜索用时 406 毫秒
151.
We have investigated the role ofinhibitor B (IB) in the activation of nuclear factor B(NF-B) observed in human aortic endothelial cells (HAEC) undergoinga low shear stress of 2 dynes/cm2. Low shear for 6 hresulted in a reduction of IB levels, an activation of NF-B,and an increase in B-dependent vascular cell adhesion molecule 1 (VCAM-1) mRNA expression and endothelial-monocyte adhesion.Overexpression of IB in HAEC attenuated all of these shear-induced responses. These results suggest that downregulation ofIB is the major factor in the low shear-induced activation ofNF-B in HAEC. We then investigated the role of nitric oxide (NO) inthe regulation of IB/NF-B. Overexpression of endothelial nitric oxide synthase (eNOS) inhibited NF-B activation in HAEC exposed to 6 h of low shear stress. Addition of the structurally unrelated NO donors S-nitrosoglutathione (300 µM) orsodium nitroprusside (1 mM) before low shear stress significantlyincreased cytoplasmic IB and concomitantly reduced NF-Bbinding activity and B-dependent VCAM-1 promoter activity. Together,these data suggest that NO may play a major role in the regulation ofIB levels in HAEC and that the application of low shear flowincreases NF-B activity by attenuating NO generation and thusIB levels.

  相似文献   
152.
In haploid strains of Saccharomyces cerevisiae, glucose depletion causes invasive growth, a foraging response that requires a change in budding pattern from axial to unipolar-distal. To begin to address how glucose influences budding pattern in the haploid cell, we examined the roles of bud-site-selection proteins in invasive growth. We found that proteins required for bipolar budding in diploid cells were required for haploid invasive growth. In particular, the Bud8p protein, which marks and directs bud emergence to the distal pole of diploid cells, was localized to the distal pole of haploid cells. In response to glucose limitation, Bud8p was required for the localization of the incipient bud site marker Bud2p to the distal pole. Three of the four known proteins required for axial budding, Bud3p, Bud4p, and Axl2p, were expressed and localized appropriately in glucose-limiting conditions. However, a fourth axial budding determinant, Axl1p, was absent in filamentous cells, and its abundance was controlled by glucose availability and the protein kinase Snf1p. In the bud8 mutant in glucose-limiting conditions, apical growth and bud site selection were uncoupled processes. Finally, we report that diploid cells starved for glucose also initiate the filamentous growth response.  相似文献   
153.
Amotile Burkholderia mallei and motile Burkholderia pseudomallei display a high similarity with regard to phenotype and clinical syndromes, glanders and melioidosis. The aim of this study was to establish a fast and reliable molecular method for identification and differentiation. Despite amotility, the gene of the filament forming flagellin (fliC) could be completely sequenced in two B. mallei strains. Only one mutation was identified discriminating between B. mallei and B. pseudomallei. A polymerase chain reaction-restriction fragment length polymorphism assay was designed making use of the absence of an AvaII recognition site in B. mallei. All seven B. mallei, 12 out of 15 B. pseudomallei and 36 closely related apathogenic Burkholderia thailandensis strains were identified correctly. However, in three B. pseudomallei strains a point mutation at gene position 798 (G to C) disrupted the AvaII site. Therefore, molecular systems based on the fliC sequence can be used for a reliable proof of strains of the three species but not for the differentiation of B. mallei and B. pseudomallei isolates.  相似文献   
154.
In budding yeast, diffusible mating pheromones initiate a signaling pathway that culminates in several responses, including cell cycle arrest. Only a handful of genes required for the interface between pheromone response and the cell cycle have been identified, among them FAR1 and FAR3; of these, only FAR1 has been extensively characterized. In an effort to learn about the mechanism by which Far3 acts, we used the two-hybrid method to identify interacting proteins. We identified five previously uncharacterized open reading frames, dubbed FAR7, FAR8, FAR9, FAR10, and FAR11, that cause a far3-like pheromone arrest defect when disrupted. Using two-hybrid and coimmunoprecipitation analysis, we found that all six Far proteins interact with each other. Moreover, velocity sedimentation experiments suggest that Far3 and Far7 to Far11 form a complex. The phenotype of a sextuple far3far7-far11 mutant is no more severe than any single mutant. Thus, FAR3 and FAR7 to FAR11 all participate in the same pathway leading to G1 arrest. These mutants initially arrest in response to pheromone but resume budding after 10 h. Under these conditions, wild-type cells fail to resume budding even after several days whereas far1 mutant cells resume budding within 1 h. We conclude that the FAR3-dependent arrest pathway is functionally distinct from that which employs FAR1.  相似文献   
155.
Two closely related p21-activated kinases from Saccharomyces cerevisiae, Ste20 and Cla4, interact with and are regulated by Cdc42, a small Rho-like GTPase. These kinases are argued to perform a common essential function, based on the observation that the single mutants are viable whereas the double mutant is inviable. Despite having a common upstream regulator and at least one common function, these molecules also have many distinct cellular signaling roles. Ste20 signals upstream of several mitogen-activated protein kinase cascades (e.g., pheromone response, filamentous growth, and high osmolarity), and Cla4 signals during budding and cytokinesis. In order to investigate how these kinases are directed to distinct functions, we sought to identify specificity determinants within Ste20 and Cla4. To this end, we constructed both chimeric fusions and point mutants and tested their ability to perform unique and shared cellular roles. Specificity determinants for both kinases were mapped to the C-terminal kinase domains. Remarkably, the substitution of a single amino acid, threonine 818, from Ste20 into an otherwise wild-type Cla4, Cla4D772T, conferred the ability to perform many Ste20-specific functions.  相似文献   
156.
Size and diverse morphologies pose a primary challenge for phagocytes such as innate immune cells and predatory amoebae when encountering fungal prey. Although filamentous fungi can escape phagocytic killing by pure physical constraints, unicellular spores and yeasts can mask molecular surface patterns or arrest phagocytic processing. Here, we show that the fungivorous amoeba Protostelium aurantium was able to adjust its killing and feeding mechanisms to these different cell shapes. Yeast-like fungi from the major fungal groups of basidiomycetes and ascomycetes were readily internalized by phagocytosis, except for the human pathogen Candida albicans whose mannoprotein coat was essential to escape recognition by the amoeba. Dormant spores of the filamentous fungus Aspergillus fumigatus also remained unrecognized, but swelling and the onset of germination induced internalization and intracellular killing by the amoeba. Mature hyphae of A. fumigatus were mostly attacked from the hyphal tip and killed by an actin-mediated invasion of fungal filaments. Our results demonstrate that predatory pressure imposed by amoebae in natural environments selects for distinct survival strategies in yeast and filamentous fungi but commonly targets the fungal cell wall as a crucial molecular pattern associated to prey and pathogens.  相似文献   
157.
158.
Protein kinase C (PKC) is a heterogeneous family of serine/threonine protein kinases that have different biological effects in normal and neoplastic melanocytes (MCs). To explore the mechanism behind their differential response to PKC activation, we analyzed the expression profile of all nine PKC isoforms in normal human MCs, HPV16 E6/E7 immortalized MCs, and a panel of melanoma cell lines. We found reduced PKCβ and increased PKCζ and PKCι expression at both the protein and mRNA levels in immortalized MCs and melanoma lines. We focused on PKCβ as it has been functionally linked to melanin production and oxidative stress response. Re-expression of PKCβ in melanoma cells inhibited colony formation in soft agar, indicating that PKCβ loss in melanoma is important for melanoma growth. PKCβII, but not PKCβI, was localized to the mitochondria, and inhibition of PKCβ significantly reduced UV-induced reactive oxygen species (ROS) in MCs with high PKCβ expression. Thus alterations in PKCβ expression in melanoma contribute to their neoplastic phenotype, possibly by reducing oxidative stress, and may constitute a selective therapeutic target.  相似文献   
159.
Aminoacylphosphatidylglycerol synthases (aaPGSs) are enzymes that transfer amino acids from aminoacyl-tRNAs (aa-tRNAs) to phosphatidylglycerol (PG) to form aa-PG in the cytoplasmic membrane of bacteria. aa-PGs provide bacteria with resistance to a range of antimicrobial compounds and stress conditions. Enterococcus faecium encodes a triple-specific aaPGS (RakPGS) that utilizes arginine, alanine, and lysine as substrates. Here we identify a novel hydrolase (AhyD), encoded immediately adjacent to rakPGS in E. faecium, which is responsible for the hydrolysis of aa-PG. The genetic synteny of aaPGS and ahyD is conserved in >60 different bacterial species. Deletion of ahyD in E. faecium resulted in increased formation of Ala-PG and Lys-PG and increased sensitivity to bacitracin. Our results suggest that AhyD and RakPGS act together to maintain optimal levels of aa-PG in the bacterial membrane to confer resistance to certain antimicrobial compounds and stress conditions.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号