首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   48篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   9篇
  2011年   10篇
  2010年   8篇
  2009年   10篇
  2008年   12篇
  2007年   7篇
  2006年   9篇
  2005年   5篇
  2004年   11篇
  2003年   9篇
  2002年   12篇
  2001年   8篇
  2000年   14篇
  1999年   14篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1994年   3篇
  1992年   7篇
  1991年   8篇
  1990年   12篇
  1989年   13篇
  1988年   11篇
  1987年   12篇
  1986年   14篇
  1985年   19篇
  1984年   9篇
  1983年   4篇
  1980年   3篇
  1979年   8篇
  1978年   6篇
  1977年   3篇
  1975年   5篇
  1974年   6篇
  1972年   6篇
  1971年   4篇
  1970年   9篇
  1969年   5篇
  1968年   12篇
  1967年   8篇
  1966年   3篇
  1965年   5篇
  1963年   4篇
  1961年   3篇
  1955年   3篇
  1921年   3篇
  1902年   5篇
排序方式: 共有426条查询结果,搜索用时 15 毫秒
91.
Resonance Raman (RR) spectra are reported for the hemoprotein subunit (SiR-HP) of Escherichia coli NADPH-sulfite reductase (EC 1.8.1.2) in various ligation and redox states. Comparison of the RR spectra of extracted siroheme and the mu-oxo FeIII dimer of octaethylisobacteriochlorin with those of mu-oxo FeIII octaethylchlorin dimer and mu-oxo FeIII octaethylporphyrin dimer demonstrates that many siroheme bands can be correlated with established porphyrin skeletal modes. Depolarization measurements are a powerful tool in this correlation, since the 45 degrees rotation of the C2 symmetry axis of the isobacteriochlorin ring relative to the chlorin system results in reversal of the polarization properties (polarized vs anomalously polarized) of bands correlating with B1g and B2g modes of porphyrin. Various SiR-HP adducts (CO, NO, CN-, SO3(2-] show upshifted high-frequency bands, characteristic of the low-spin state and consistent with the expected core size sensitivity of the skeletal modes. Fully reduced unliganded SiR-HP (both siroheme and Fe4S4 cluster reduced) in liquid solution displays RR features comparable to those of high-spin ferrous porphyrins; on freezing, the RR spectrum changes, reflecting an apparent mixture of siroheme spin states. At intermediate reduction levels in solution a RR species is observed whose high-frequency bands are upshifted relative to oxidized and fully reduced SiR-HP. This spectrum, thought to arise from the "one-electron" state of SiR-HP (siroheme reduced, cluster oxidized), may be due to S = 1 FeII siroheme.  相似文献   
92.
S H Han  J F Madden  L M Siegel  T G Spiro 《Biochemistry》1989,28(13):5477-5485
The vibrations of the bound diatomic heme ligands CO, CN-, and NO are investigated by resonance Raman spectroscopy in various redox states of Escherichia coli sulfite reductase hemoprotein, and assignments are generated by use of isotopically labeled ligands. For the fully reduced CO complex (ferrous siroheme, reduced Fe4S4 cluster) at room temperature, nu CO is observed at 1904 cm-1, shifting to 1920 cm-1 upon oxidation of the cluster. The corresponding delta FeCO modes are identified at 574 and 566 cm-1, respectively, by virtue of the zigzag pattern of their isotopic shifts. In frozen solution, two species are observed for the cluster-oxidized state, with nu CO at 1910 and 1936 cm-1 and nu FeC at 532 and 504 cm-1, respectively; nu FeC for the fully reduced species is identified at 526 cm-1 in the frozen state. For the ferrous siroheme-NO complex (cluster oxidized), nu NO is identified at 1555 cm-1 in frozen solution and a low-frequency mode is identified at 558 cm-1; this stretching mode is significantly lower than that observed in Mb-NO. For the ferric siroheme cyanide complexes evidence of two ligand-bonding forms is observed, with modes at 451/390 and 451/352 cm-1; they are distinguished by a reversal of the isotopic shift patterns of the upper and lower modes and could arise from a linear and a bent Fe-C unit, respectively. For the ferrous siroheme cyanide complex isotope-sensitive modes observed at 495 and 452 cm-1 are assigned to the FeCN- bending and FeC stretching vibrations, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
93.
A melanoma proteoglycan model system has been used to examine the role of core protein asparagine-linked (N-linked) oligosaccharides in the transport and assembly of proteoglycan molecules. The use of agents which block discrete steps in the trimming and processing of core oligosaccharides (castanospermine, 1-deoxynojirimycin, N-methyldeoxynojirimycin, 1-deoxymannojirimycin, and swainsonine) demonstrates that removal of glucose residues from the N-linked oligosaccharides is required for the cell surface expression of a melanoma proteoglycan core protein and for the conversion of the core protein to a chondroitin sulfate proteoglycan. However, complete maturation of the oligosaccharides to a "complex" form is not required for these events. Treatment of M21 human melanoma cells with the glucosidase inhibitors castanospermine, 1-deoxynojirimycin, or N-methyldeoxynojirimycin results in a dose-dependent inhibition of glycosaminoglycan (GAG) addition to the melanoma antigen recognized by monoclonal antibody 9.2.27. In contrast, treatment with the mannosidase inhibitors 1-deoxymannojirimycin and swainsonine does not effect GAG addition. Identical results are obtained when the major histocompatibility complex class II antigen gamma chain proteoglycan is examined in inhibitor-treated melanoma and B-lymphoblastoid cells. These data, in conjunction with the known effects of the glucosidase and mannosidase inhibitors on the transport and secretion of other glycoproteins support the hypothesis that the addition, trimming, and processing of N-linked oligosaccharides is involved in the transport of certain proteoglycan core proteins to the site of GAG addition and to the cell surface.  相似文献   
94.
Calf thyroid slices were found to incorporate [35S] sulfate into two major plasma membrane glycoproteins, which have been previously designated as GP-1 and GP-3 (Okada, Y., and Spiro, R. G. (1980) J. Biol. Chem. 255, 8865-8872). The 35S-glycoproteins were identified on the basis of their characteristic solubility and electrophoretic migration as well as their affinity for Bandeiraea simplicifolia I lectin. After pronase digestion of these glycoproteins, the 35S-label remained associated with the glycopeptides primarily on asparagine-linked carbohydrate units which were released by hydrazinolysis. Examination of the reduced radio-labeled products obtained by nitrous acid cleavage of the hydrazine-liberated oligosaccharides indicated that sulfate esters of N-acetylglucosamine occurred at three locations on the carbohydrate units; two 35S-monosaccharides (2,5-anhydromannitol 4- and 6-sulfate) and one 35S-disaccharide (beta-Gal(1----4)-2,5-anhydromannitol(6-SO4] were formed. The disaccharide is believed to be derived from an internal sulfated N-acetyllactosamine sequence while the monosaccharides most likely originate from 4- and 6-sulfated N-acetylglucosamine residues situated, respectively, at the non-reducing and reducing termini of the oligosaccharide units. Quantitation by NaB[3H]4 reduction of the sulfated saccharides obtained by nitrous acid treatment of hydrazine-released oligosaccharides from unlabeled GP-3 indicated that about 20% of the asparagine-linked carbohydrate units contain sulfate substituents.  相似文献   
95.
96.
97.
98.
99.
100.
Cystathionine beta-synthase (CBS) condenses homocysteine, a toxic metabolite, with serine in a pyridoxal phosphate-dependent reaction. It also contains a heme cofactor to which carbon monoxide (CO) or nitric oxide can bind, resulting in enzyme inhibition. To understand the mechanism of this regulation, we have investigated the equilibria and kinetics of CO binding to the highly active catalytic core of CBS, which is dimeric. CBS exhibits strong anticooperativity in CO binding with successive association constants of 0.24 and 0.02 microm(-1). Stopped flow measurements reveal slow CO association (0.0166 s(-1)) limited by dissociation of the endogenous ligand, Cys-52. Rebinding of CO and of Cys-52 following CO photodissociation were independently monitored via time-resolved resonance Raman spectroscopy. The Cys-52 rebinding rate, 4000 s(-1), is essentially unchanged between pH 7.6 and 10.5, indicating that the pK(a) of Cys-52 is shifted below pH 7.6. This effect is attributed to the nearby Arg-266 residue, which is proposed to form a salt bridge with the dissociated Cys-52, thereby inhibiting its protonation and slowing rebinding to the Fe. This salt bridge suggests a pathway for enzyme inactivation upon CO binding, because Arg-266 is located on a helix that connects the heme and pyridoxal phosphate cofactor domains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号