首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   48篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   9篇
  2011年   10篇
  2010年   8篇
  2009年   10篇
  2008年   12篇
  2007年   7篇
  2006年   9篇
  2005年   5篇
  2004年   11篇
  2003年   9篇
  2002年   12篇
  2001年   8篇
  2000年   14篇
  1999年   14篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1994年   3篇
  1992年   7篇
  1991年   8篇
  1990年   12篇
  1989年   13篇
  1988年   11篇
  1987年   12篇
  1986年   14篇
  1985年   19篇
  1984年   9篇
  1983年   4篇
  1980年   3篇
  1979年   8篇
  1978年   6篇
  1977年   3篇
  1975年   5篇
  1974年   6篇
  1972年   6篇
  1971年   4篇
  1970年   9篇
  1969年   5篇
  1968年   12篇
  1967年   8篇
  1966年   3篇
  1965年   5篇
  1963年   4篇
  1961年   3篇
  1955年   3篇
  1921年   3篇
  1902年   5篇
排序方式: 共有426条查询结果,搜索用时 15 毫秒
81.
Isotopic studies of nitrogen and sulphur inputs to plant/soil systems commonly rely on limited published data for the 15N/14N and 34S/32S ratios of nitrate, ammonium and sulphate in rainfall. For systems with well-developed plant canopies, however, inputs of these ions from dry deposition or particulates may be more important than rainfall. The manner in which isotopic fractionation between ions and gases may lead to dry deposition and particulates having 15N/14N or 34S/32S ratios different from those of rainfall is considered. Data for rainfall and throughfall in coniferous plantations are then discussed, and suggest that: (1) in line with expectations, nitrate washed from the canopy has 15N/14N ratios higher than those in rainfall; (2) the 15N/14N ratios of ammonium washed from the canopy are variable, with high ratios being found for canopies of higher pH in conditions of elevated ambient ammonia gas concentrations; and (3) in accord with expectations and previous work, 34S/32S ratios of sulphate washed from the canopy are not substantially different from those in rainfall. The study suggests that if atmospheric inputs are relevant to isotopic studies of the sources of nitrogen for canopied systems, then confident interpretation will require analysis of these inputs. Received: 3 March 1996 / Accepted: 28 September 1996  相似文献   
82.
The transfer of mannose from GDP-mannonse to exogenous glycopeptides and simple glycosides has been shown to be carried out by calf thyroid particles (Adamany, A. M., and Spiro, R. G. (1975) J. Biol. Chem. 250, 2830-2841). The present investigation indicates that this mannosylation process is accomplished through two sequential enzymatic reactions. The first involves the transfer of mannose from the sugar nucleotide to an endogenous acceptor to form a compound which has the properties of dolichyl mannosyl phosphate, while in the properties of dolichyl mannosyl phosphate, while in the second reaction this mannolipid serves as the glycosyl donor to exogenous acceptors. The particle-bound enzyme which catalyzed the first reaction utilized GDP-mannose (Km = 0.29 microM) as the most effective mannosyl donor, required a divalent cation, preferably manganese or calcium, and acted optimally at pH 6.3. Mannolipid synthesis was reversed by addition of GDP and a ready exchange of the mannose moiety was observed between [14C]mannolipid and unlabeled GDP-mannose. Exogenously supplied dolichyl phosphate, and to a lesser extent ficaprenyl phosphate, served as acceptors for the transfer reaction. The 14C-labeled endogenous lipid had the same chromatographic behavior as synthetic dolichyl mannosyl phosphate and enzymatically mannosylated dolichyl phosphate. The mannose component in the endogenous lipid was not susceptible to reduction with sodium borohydride and was released by mild acid hydrolysis. Alkaline treatment of the mannolipid released a phosphorylated mannose with properties consistent with that of mannose 2-phosphate. The formation of this compound which can arise from a cyclic 1,2-phosphate indicated, on the basis of steric considerations, that the mannose is present in beta linkage to the phosphate of the lipid. An intermediate role of the mannolipid in the glycosylation of exogenous acceptors was suggested by the observation that addition of dolichyl phosphate to thyroid particles resulted in a marked enhancement of mannose transfer from GDP-mannose to methyl-alpha-D-mannopyranoside acceptor while the presence of the glycoside caused a decrease in the mannolipid level. The glycosyl donor function of the polyisoprenyl mannosyl phosphate in the second reaction of the mannosylation sequence could be directly demonstrated by the transfer of [14C]mannose from purified endogenous mannolipid to either methyl-alpha-D-mannoside or dinitrophenyl unit A glycopeptides by thyroid enzyme in the presence of Triton X-100. The mannosylation of the glycoside was not inhibited by EDTA whereas the transfer of mannose to glycopeptide was cation-dependent. While dolichyl [14C]mannosyl phosphate, prepared from exogenous dolichyl phosphate, served as a donor of mannose to exogenous acceptor, this function could not be fulfilled by ficaprenyl [14C]mannosyl phosphate. The two-step reaction sequence carried out by thyroid enzymes which leads to the formation of an alpha-D-manno-pyranosyl-D-mannose linkage in exogenous acceptors by transfer of mannose from GDP-mannose through a beta-linked intermediate appears to involve a double inversion of anomeric configuration of this sugar.  相似文献   
83.
M21 human melanoma cells express an Arg-Gly-Asp-directed adhesion receptor composed of noncovalently associated alpha and beta chains. To establish the structural and functional properties of this receptor on M21 human melanoma cells, stable variant cell lines were selected that express altered alpha chain levels. One of these variants, M21-L, fails to synthesize alpha chain protein or its mRNA, yet does produce normal levels of the beta chain. In these cells the beta chain does not reach the cell surface but rather accumulates within the cell. M21-L cells lacking the alpha chain are incapable of attaching to vitronectin, von Willebrand factor, fibrinogen, or an Arg-Gly-Asp-containing heptapeptide yet attach normally to fibronectin, whereas the unselected M21 cells attach to all of these adhesive proteins. In addition, a monoclonal antibody, LM609 generated to a functional site on the intact receptor, is capable of preventing M21 cell attachment to vitronectin, von Willebrand factor, fibrinogen, and the Arg-Gly-Asp peptide but not to fibronectin. Following a 2-min biosynthetic pulse-label, the newly synthesized alpha chain remains in free form for 5 min and then associates with previously synthesized beta chain present in an intracellular pool. Once oligomerization takes place, the receptor gains the capacity to recognize Arg-Gly-Asp, and at this time the epitope recognized by monoclonal antibody LM609 is formed.  相似文献   
84.
S Dasgupta  T G Spiro 《Biochemistry》1986,25(20):5941-5948
Resonance Raman spectra are reported for deoxyhemoglobin (deoxyHb) and the (carbonmonoxy)hemoglobin (HbCO) photoproduct Hb by use of 7-ns YAG laser pulses at wavelengths of 416 and 532 nm, where enhancement is observed for totally symmetric and nontotally symmetric modes, respectively. The frequencies of the porphyrin skeletal modes v10, v2, v19, v11, and v3 have been determined to be 1602, 1559, 1553, 1542, and 1466 cm-1 in Hb. These frequencies are 2-3 cm-1 lower than the corresponding frequencies for deoxyHb. The v19 and v11 frequencies are at the expected values for a Ct-N distance of 2.057 A, the known core size for a 6-coordinate high-spin FeII-porphyrin complex. The remaining frequencies, however, deviate from the core size correlations for these modes in the same direction as do those of deoxyHb, suggesting that the porphyrin ring is domed in both species. Thus, the heme structure is similar for deoxyHb and Hb but is slightly expanded in the latter. The expanded heme in Hb implies a restraint on the full out-of-plane displacement of the Fe atom, by an estimated approximately 0.1 A relative to deoxyHb. This could result from a residual interaction with the CO molecule if the latter remains held by the protein against the Fe atom, in a high-spin 6-coordinate complex. The available spectroscopic evidence suggests that such a complex may be stabilized at 4 K but is unlikely to persist at room temperature beyond the electronic relaxation (0.35 ps) of the electronically excited heme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
85.
Plasma membranes were isolated from calf thyroid microsomes and further resolved into two subfractions by sucrose density gradient centrifugations. The lighter and major membrane fraction was obtained in a yield of 10 mg/100 g of thyroid and was enriched 38-fold with respect to 5′-nucleotidase activity compared to the homogenate. It differed from the denser plasma membrane fraction in containing greater amounts of phospholipid and cholesterol but had a similar total carbohydrate content (16 mg/100 mg protein) and monosaccharide composition. The membranes were found to retain most (80%) of their carbohydrate after delipidation. The major protein-bound sugars present in the lighter membrane fraction expressed as micromoles per 100 mg of peptide were: galactose 24, mannose 17, fucose 3, glucosamine 23, galactosamine 4, and sialic acid 9. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate of the lipid-free membranes revealed at least 18 protein bands and 3 periodic acid-Schiffreactive glycoprotein components. Incubation of the delipidated membranes with Pronase resulted in the solubilization of 95% of the saccharide portion which upon filtration through Bio-Gel P-6 and P-10 columns yielded several glycopeptide fractions. While some of the carbohydrate was found in glycopeptides which appeared to contain the well-known complex and polymannose asparagine-bound oligosaccharides, as well as small O-glycosidically linked units, approximately half was recovered in high molecular weight components which contained galactose and glucosamine as their principal sugar constituents, and which were similar in composition to glycopeptides recently isolated (T. Krusius, J. Finne, and H. Rauvala, 1978, Eur. J. Biochem.92, 289–300) from human erythrocyte membranes.  相似文献   
86.
87.
Analysis of the Sephacryl S-200 fractionated type IV collagen domains from bovine and human glomerular basement membranes (GBM) and calf anterior lens capsule (ALC) indicated that Asn-linked oligosaccharides are primarily or exclusively localized in the 7 S region, whereas the hydroxylysine-linked Glc alpha 1----2Gal disaccharides (Glc-Gal-Hyl) are present in all the major segments of the molecule (7 S, NC1, and helical domain); no Ser/Thr-linked saccharide were detected. The Asn-linked carbohydrate units observed in the 7 S domain (Mr approximately 300,000) occurred in a number equal to the 12 polypeptide chains constituting this cross-linked region, and this was consistent with lectin blots of the reduced electrophoretically resolved 7 S components. Fractionation of the N-glycanase and endo-beta-N-acetylglucosaminidase-released oligosaccharides by concanavalin A affinity and high performance liquid chromatography indicated that the Asn-linked carbohydrate occurred predominantly in the form of complex tri- and biantennary units, although submolar amounts of polymannose variants (Man5-7GlcNAc2) were also present in calf ALC and bovine GBM. Structural studies of the complex N-linked oligosaccharides employing hydrazine/nitrous acid fragmentation and glycosidase digestions indicated a pattern in which there was complete fucosylation of the innermost GlcNAc residue of the Man3GlcNAc2 core but only sparse substitution with capping groups of the nonrepeating N-acetyllactosamine branches. Whether tri- or biantennary, the oligosaccharides from bovine GBM contained only one capping residue, in the form of either NeuAc or alpha-D-Gal, whereas those from ALC had only a single alpha-D-Gal and no NeuAc; human GBM oligosaccharides were devoid of both NeuAc and alpha-D-Gal. The absence of terminal alpha-D-Gal in the human 7 S domain was reflected in its lack of reactivity with Bandeiraea simplicifolia I and from its failure to yield Gal alpha 1----3Gal beta 1----4 [3H]anhydromannitol after hydrazine/nitrous acid/NaB3H4 treatment. Application of the latter procedure to the collagen domains yielded, in addition to fragments from the N-linked oligosaccharides, a disaccharide (Glc alpha 1----2[3H]galactitol) derived from the Glc-Gal-Hyl units. The localization of Asn-linked carbohydrate units in the evolutionarily conserved 7S domain of type IV collagens suggests that these oligosaccharides may play a role in the assembly of the collagen network of basement membranes.  相似文献   
88.
89.
Resonance Raman spectroscopy can provide details of molecular structure via the enhancement of specific vibrational bands in the spectrum of the scattered light when the laser excitation is tuned to electronic absorption wavelengths of the molecule. The availability of lasers operating in the deep ultraviolet region makes it possible to apply this technique to problems of protein structure. The backbone conformation and the environments of aromatic side chains can be probed via appropriate enhancement of selected vibrational modes. In this article we investigate ultraviolet resonance Raman (UVRR) spectra from the coat protein of the filamentous bacteriophage, fd, in the intact virus and in sodium dodecyl sulfate (SDS) suspension. The results indicate that 1) the protein is completely alpha-helical in the mature virus, but loses a large fraction of its helix content in the SDS micelles. 2) The two tyrosine residues appear to behave as H-bond acceptors in the intact phage but this interaction is lost in the micelles. 3) The tryptophan residue is not solvent-exposed in either protein conformation, although in SDS it is accessible to H/D exchange with the solvent. 4) The three phenylalanine residues are involved in stacking interactions in the intact virus; these are disrupted in the SDS micelles. 5) The single proline residue appears to be in a trans conformation both in the virus and in the micelles.  相似文献   
90.
Cu K-edge X-ray absorption spectra have been recorded for the enzyme tyrosinase from Neurospora crassa, in its oxy, resting (met-aquo), and inhibitor-bound (met-mimosine) forms. The K-edges proper resemble those of oxy- and met-hemocyanin, and confirm the presence of CuII. The forbidden 1s----3d transition is noticeably stronger for the 1-mimosine-bound enzyme, implying some distortion of the tetragonal Cu coordination group on inhibitor binding. The extended fine structure (EXAFS) beyond the K-edge has been analyzed. The first shell scattering is consistent with the presence of two N- and two O-ligand atoms, at 2.0 and 1.9 A, for all three forms of the enzyme; there is no evidence for heavy atom (S) scattering in the first shell. As in analogous hemocyanin derivatives, the outer shell scattering contains contributions from distant atoms of imidazole ligands, as well as from an addition scattering atom, at 3.4-3.6 A. For oxy-tyrosinase the additional scatterer is unambiguously a heavy atom (Cu), although a larger Debye-Waller factor suggests a somewhat less rigid binuclear site than in oxy-hemocyanin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号