首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   48篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   9篇
  2011年   10篇
  2010年   8篇
  2009年   10篇
  2008年   12篇
  2007年   7篇
  2006年   9篇
  2005年   5篇
  2004年   11篇
  2003年   9篇
  2002年   12篇
  2001年   8篇
  2000年   14篇
  1999年   14篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1994年   3篇
  1992年   7篇
  1991年   8篇
  1990年   12篇
  1989年   13篇
  1988年   11篇
  1987年   12篇
  1986年   14篇
  1985年   19篇
  1984年   9篇
  1983年   4篇
  1980年   3篇
  1979年   8篇
  1978年   6篇
  1977年   3篇
  1975年   5篇
  1974年   6篇
  1972年   6篇
  1971年   4篇
  1970年   9篇
  1969年   5篇
  1968年   12篇
  1967年   8篇
  1966年   3篇
  1965年   5篇
  1963年   4篇
  1961年   3篇
  1955年   3篇
  1921年   3篇
  1902年   5篇
排序方式: 共有425条查询结果,搜索用时 15 毫秒
61.
A stereological comparison of the hepatic parenchymal cells from 125-g male rats given a daily injection for 6 days of either 5 mg of cortisone acetate or saline (controls) was carried out with both light and electron microscopy. Cortisone treatment results in an increase in average parenchymal cell cytoplasmic volume from 5100 to 5800 µ3 and a decrease in average nuclear diameter from 7.1 to 6.5 µ. The volume of the average mitochondrion is increased fourfold in midzonal and peripheral regions of hepatic lobules, and there is a decrease in the number of mitochondria per cell such that the total mitochondrial volume per cell remains approximately unchanged. The numbers of peroxisomes are reduced, while the numbers of lysosomes and lipid droplets are increased in all parts of the lobules. The average volume of glycogen is doubled in all cells. The areas of membranes of the smooth- and rough-surfaced endoplasmic reticulum are decreased to one-half and two-thirds of their control values, respectively. The effects of cortisone on these various structural elements is discussed with respect to steroid-related alterations in biochemical processes.  相似文献   
62.
This study describes the changes produced in the subcellular morphology of mammalian myocardium when perfusate sodium, calcium, and chloride concentrations are varied. By means of a recently developed perfusion technique, functioning dog papillary muscles were perfused with isotonic solutions of varying ionic compositions. Examination of the tissue in the electron microscope revealed that control muscles showed satisfactory preservation of ultrastructure, demonstrating that the protocol itself did not create significant morphological artefact. Low sodium chloride perfusion produced dilatation of both transverse tubules and longitudinal sarcoplasmic reticulum elements. Low sodium or high calcium concentrations produced dilation of tubular elements of the longitudinal sarcoplasmic reticulum while leaving transverse tubules intact. High calcium perfusion produced mitochondrial swelling and vacuolization. Mitochondrial precipitate, both crystalline and amorphous in form, was observed and presumed to be calcium phosphate, either alone or mixed with calcium carbonate. The possibility that the morphological changes observed might indicate subcellular loci of specific ion permeability is discussed. A correlation of the known kinetic behavior of sodium and calcium ions in mammalian myocardium with the ultrastructural alterations produced is suggested.  相似文献   
63.
64.
The serine hydrolase monoacylglycerol lipase (MGL) functions as the main metabolizing enzyme of 2-arachidonoyl glycerol, an endocannabinoid signaling lipid whose elevation through genetic or pharmacological MGL ablation exerts therapeutic effects in various preclinical disease models. To inform structure-based MGL inhibitor design, we report the direct NMR detection of a reversible equilibrium between active and inactive states of human MGL (hMGL) that is slow on the NMR time scale and can be modulated in a controlled manner by pH, temperature, and select point mutations. Kinetic measurements revealed that hMGL substrate turnover is rate-limited across this equilibrium. We identify a network of aromatic interactions and hydrogen bonds that regulates hMGL active-inactive state interconversion. The data highlight specific inter-residue interactions within hMGL modulating the enzymes function and implicate transitions between active (open) and inactive (closed) states of the hMGL lid domain in controlling substrate access to the enzymes active site.  相似文献   
65.
1 , the resting Fe(II) state is mainly 6-coordinate and low-spin, and the CO adduct has vibrational frequencies characteristic of a histidine-heme-CO complex in a hydrophobic environment. In contrast, the protein sGC2 is 5-coordinate, high-spin in the resting state, and the CO adduct has perturbed vibrational frequencies indicative of a negatively polarizing residue in the binding pocket. The differences may result from the need to reconstitute sGC1 or different isolation procedures for sGC1 versus sGC2. However, both sGC1 and sGC2 are activated by the same mechanism, namely displacement of the proximal histidine ligand upon NO binding, and neither one is activated by CO. If CO is an activator in vivo, some additional molecular component is required. Received: 11 February 1999 / Accepted: 17 September 1999  相似文献   
66.
Methionine-rich motifs have an important role in copper trafficking factors, including the CusF protein. Here we show that CusF uses a new metal recognition site wherein Cu(I) is tetragonally displaced from a Met2His ligand plane toward a conserved tryptophan. Spectroscopic studies demonstrate that both thioether ligation and strong cation-pi interactions with tryptophan stabilize metal binding. This novel active site chemistry affords mechanisms for control of adventitious metal redox and substitution chemistry.  相似文献   
67.
Regulation of classic cadherins plays a critical role in tissue remodeling during development and cancer; however, less attention has been paid to the importance of desmosomal cadherins. We previously showed that EGFR inhibition results in accumulation of the desmosomal cadherin, desmoglein 2 (Dsg2), at cell-cell interfaces accompanied by inhibition of matrix metalloprotease (MMP)-dependent shedding of the Dsg2 ectodomain and tyrosine phosphorylation of its cytoplasmic domain. Here, we show that EGFR inhibition stabilizes Dsg2 at intercellular junctions by interfering with its accumulation in an internalized cytoplasmic pool. Furthermore, MMP inhibition and ADAM17 RNAi, blocked shedding and depleted internalized Dsg2, but less so E-cadherin, in highly invasive SCC68 cells. ADAM9 and 15 silencing also impaired Dsg2 processing, supporting the idea that this desmosomal cadherin can be regulated by multiple ADAM family members. In contrast, ADAM10 siRNA enhanced accumulation of a 100-kDa Dsg2 cleavage product and internalized pool of Dsg2. Although both MMP and EGFR inhibition increased intercellular adhesive strength in control cells, the response to MMP-inhibition was Dsg2-dependent. These data support a role for endocytic trafficking in regulating desmosomal cadherin turnover and function and raise the possibility that internalization and regulation of desmosomal and classic cadherin function can be uncoupled mechanistically.  相似文献   
68.
TRPV4, a close relative of the vanilloid receptor TRPV1, is activated by diverse modalities such as endogenous lipid ligands, hypotonicity, protein kinases and, possibly, mechanical inputs. While its multiple roles in vivo are being explored with KO mice and selective agonists, there is a dearth of selective antagonists available to examine TRPV4 function. Herein we detail the use of a focused library of commercial compounds in order to identify RN-1747 and RN-1734, a pair of structurally related small molecules endowed with TRPV4 agonist and antagonist properties, respectively. Their activities against human, rat and mouse TRPV4 were characterized using electrophysiology and intracellular calcium influx. Significantly, antagonist RN-1734 was observed to completely inhibit both ligand- and hypotonicity-activated TRPV4. In addition, RN-1734 was found to be selective for TRPV4 in a TRP selectivity panel including TRPV1, TRPV3 and TRPM8, and could thus be a valuable pharmacological probe for TRPV4 studies.  相似文献   
69.

Background  

The decrease in cost for sequencing and improvement in technologies has made it easier and more common for the re-sequencing of large genomes as well as parallel sequencing of small genomes. It is possible to completely sequence a small genome within days and this increases the number of publicly available genomes. Among the types of genomes being rapidly sequenced are those of microbial and viral genomes responsible for infectious diseases. However, accurate gene prediction is a challenge that persists for decoding a newly sequenced genome. Therefore, accurate and efficient gene prediction programs are highly desired for rapid and cost effective surveillance of RNA viruses through full genome sequencing.  相似文献   
70.
Eukaryotic nitric oxide (NO) signaling involves modulation of cyclic GMP (cGMP) levels through activation of the soluble isoform of guanylate cyclase (sGC). sGC is a heterodimeric hemoprotein that contains a Heme-Nitric oxide and OXygen binding (H-NOX) domain, a Per/ARNT/Sim (PAS) domain, a coiled-coil (CC) domain, and a catalytic domain. To evaluate the role of these domains in regulating the ligand binding properties of the heme cofactor of NO-sensitive sGC, we constructed chimeras by swapping the rat β1 H-NOX domain with the homologous region of H-NOX domain-containing proteins from Thermoanaerobacter tengcongensis, Vibrio cholerae, and Caenorhabditis elegans (TtTar4H, VCA0720, and Gcy-33, respectively). Characterization of ligand binding by electronic absorption and resonance Raman spectroscopy indicates that the other rat sGC domains influence the bacterial and worm H-NOX domains. Analysis of cGMP production in these proteins reveals that the chimeras containing bacterial H-NOX domains exhibit guanylate cyclase activity, but this activity is not influenced by gaseous ligand binding to the heme cofactor. The rat-worm chimera containing the atypical sGC Gcy-33 H-NOX domain was weakly activated by NO, CO, and O(2), suggesting that atypical guanylate cyclases and NO-sensitive guanylate cyclases have a common molecular mechanism for enzyme activation. To probe the influence of the other sGC domains on the mammalian sGC heme environment, we generated heme pocket mutants (Pro118Ala and Ile145Tyr) in the β1 H-NOX construct (residues 1-194), the β1 H-NOX-PAS-CC construct (residues 1-385), and the full-length α1β1 sGC heterodimer (β1 residues 1-619). Spectroscopic characterization of these proteins shows that interdomain communication modulates the coordination state of the heme-NO complex and the heme oxidation rate. Taken together, these findings have important implications for the allosteric mechanism of regulation within H-NOX domain-containing proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号