首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   48篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   9篇
  2011年   10篇
  2010年   8篇
  2009年   10篇
  2008年   12篇
  2007年   7篇
  2006年   9篇
  2005年   5篇
  2004年   11篇
  2003年   9篇
  2002年   12篇
  2001年   8篇
  2000年   14篇
  1999年   14篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1994年   3篇
  1992年   7篇
  1991年   8篇
  1990年   12篇
  1989年   13篇
  1988年   11篇
  1987年   12篇
  1986年   14篇
  1985年   19篇
  1984年   9篇
  1983年   4篇
  1980年   3篇
  1979年   8篇
  1978年   6篇
  1977年   3篇
  1975年   5篇
  1974年   6篇
  1972年   6篇
  1971年   4篇
  1970年   9篇
  1969年   5篇
  1968年   12篇
  1967年   8篇
  1966年   3篇
  1965年   5篇
  1963年   4篇
  1961年   3篇
  1955年   3篇
  1921年   3篇
  1902年   5篇
排序方式: 共有425条查询结果,搜索用时 15 毫秒
31.
Bacterial nitric-oxide reductase catalyzes the two electron reduction of nitric oxide to nitrous oxide. In the oxidized form the active site non-heme Fe(B) and high spin heme b(3) are mu-oxo bridged. The heme b(3) has a ligand-to-metal charge transfer band centered at 595 nm, which is insensitive to pH over the range of 6.0-8.5. Partial reduction of nitric-oxide reductase yields a three electron-reduced state where only the heme b(3) remains oxidized. This results in a shift of the heme b(3) charge transfer band lambda(max) to longer wavelengths. At pH 6.0 the charge transfer band lambda(max) is 605 nm, whereas at pH 8.5 it is 635 nm. At pH 6.5 and 7.5 the nitric-oxide reductase ferric heme b(3) population is a mixture of both 605- and 635-nm forms. Magnetic circular dichroism spectroscopy suggests that at all pH values examined the proximal ligand to the ferric heme b(3) in the three electron-reduced form is histidine. At pH 8.5 the distal ligand is hydroxide, whereas at pH 6.0, when the enzyme is most active, it is water.  相似文献   
32.
The barrier function of skin: how to keep a tight lid on water loss   总被引:4,自引:0,他引:4  
Without an epidermis, we would be in a sorry state. The epidermal layer not only protects us from environmental pathogens but also acts as a 'barrier' to water loss. The identification of the molecular nature of the barrier has occupied the efforts of skin researchers over many years, with the consensus in the field being that a protein-lipid layer, located in the upper layers of the epidermis, is necessary for establishment and maintenance of a water barrier. Now, evidence has been presented that components of intercellular junctions, termed tight junctions, also play an essential role in development of barrier function in the skin. Remarkably, the data support a hypothesis that was presented more than 30 years ago.  相似文献   
33.
34.
35.
The Co-C stretching vibration has been identified in resonance Raman spectra of alkyl-cobalamins, via isotope substitution, permitting estimation of the Co-C force constants, f = 1.85, 1.77 and 1.50 mdyn Å−1 for methyl-, ethyl- and deoxyadenosyl-cobalamin, respectively (νCo-C = 506, 471 and 442/429 cm−1). These values scale with the reported bond dissociation energies, and support the view that the Co-C bond weakens with increasing bulk of the alkyl group due to steric interaction with the corrin ring. However, the force constants are unaffected by dissociation of the dimethylbenzimidazole ligand at low pH, even though the bond dissociation energy rises significantly upon DMB dissociation in AdoCbl. This increase must therefore reflect destabilization of the CoII product, rather than Co-C bond strengthening in the AdoCbl ground state. The insensitivity of the force constants to dimethylbenzimidazole dissociation implies that the steric effect of DMB coordination is not transmitted to the Co-C bond by the corrin ring. Consistent with this interpretation, the RR frequencies of the corrin ring modes are minimally perturbed by DMB dissociation, supporting earlier NMR results that indicated little change in the corrin conformation.  相似文献   
36.
Karaivanova  VK; Luan  P; Spiro  RG 《Glycobiology》1998,8(7):725-730
Endo-alpha-D-mannosidase is an enzyme involved in N-linked oligosaccharide processing which through its capacity to cleave the internal linkage between the glucose-substituted mannose and the remainder of the polymannose carbohydrate unit can provide an alternate pathway for achieving deglucosylation and thereby make possible the continued formation of complex oligosaccharides during a glucosidase blockade. In view of the important role which has been attributed to glucose on nascent glycoproteins as a regulator of a number of biological events, we chose to further define the in vivo action of endomannosidase by focusing on the well characterized VSV envelope glycoprotein (G protein) which can be formed by the large array of cell lines susceptible to infection by this pathogen. Through an assessment of the extent to which the G protein was converted to an endo-beta-N- acetylglucosaminidase (endo H)-resistant form during a castanospermine imposed glucosidase blockade, we found that utilization of the endomannosidase-mediated deglucosylation route was clearly host cell specific, ranging from greater than 90% in HepG2 and PtK1 cells to complete absence in CHO, MDCK, and MDBK cells, with intermediate values in BHK, BW5147.3, LLC-PK1, BRL, and NRK cell lines. In some of the latter group the electrophoretic pattern after endo H treatment suggested that only one of the two N-linked oligosaccharides of the G protein was processed by endomannosidase. In the presence of the specific endomannosidase inhibitor, Glcalpha1-->3(1- deoxy)mannojirimycin, the conversion of the G protein into an endo H- resistant form was completely arrested. While the lack of G protein processing by CHO cells was consistent with the absence of in vitro measured endomannosidase activity in this cell line, the failure of MDBK and MDCK cells to convert the G protein into an endo H-resistant form was surprising since these cell lines have substantial levels of the enzyme. Similarly, we observed that influenza virus hemagglutinin was not processed in castanospermine-treated MDCK cells. Our findings suggest that studies which rely on glucosidase inhibition to explore the function of glucose in controlling such critical biological phenomena as intracellular movement or quality control should be carried out in cell lines in which the glycoprotein under study is not a substrate for endomannosidase action.   相似文献   
37.
Wnt signalling is a key pathway controlling bone formation in mice and humans. One of the regulators of this pathway is Dkk1, which antagonizes Wnt signalling through the formation of a ternary complex with the transmembrane receptors Krm1/2 and Lrp5/6, thereby blocking the induction of Wnt signalling by the latter ones. Here we show that Kremen-2 (Krm2) is predominantly expressed in bone, and that its osteoblast-specific over-expression in transgenic mice (Col1a1-Krm2) results in severe osteoporosis. Histomorphometric analysis revealed that osteoblast maturation and bone formation are disturbed in Col1a1-Krm2 mice, whereas bone resorption is increased. In line with these findings, primary osteoblasts derived from Col1a1-Krm2 mice display a cell-autonomous differentiation defect, impaired canonical Wnt signalling and decreased production of the osteoclast inhibitory factor Opg. To determine whether the observed effects of Krm2 on bone remodeling are physiologically relevant, we analyzed the skeletal phenotype of 24 weeks old Krm2-deficient mice and observed high bone mass caused by a more than three-fold increase in bone formation. Taken together, these data identify Krm2 as a regulator of bone remodeling and raise the possibility that antagonizing KRM2 might prove beneficial in patients with bone loss disorders.  相似文献   
38.
Coronaviruses (CoVs) possess large RNA genomes and exist as quasispecies, which increases the possibility of adaptive mutations and interspecies transmission. Recently, CoVs were recognized as important pathogens in captive wild ruminants. This is the first report of the isolation and detailed genetic, biologic, and antigenic characterization of a bovine-like CoV from a giraffe (Giraffa camelopardalis) in a wild-animal park in the United States. CoV particles were detected by immune electron microscopy in fecal samples from three giraffes with mild-to-severe diarrhea. From one of the three giraffe samples, a CoV (GiCoV-OH3) was isolated and successfully adapted to serial passage in human rectal tumor 18 cell cultures. Hemagglutination assays, receptor-destroying enzyme activity, hemagglutination inhibition, and fluorescence focus neutralization tests revealed close biological and antigenic relationships between the GiCoV-OH3 isolate and selected respiratory and enteric bovine CoV (BCoV) strains. When orally inoculated into a BCoV-seronegative gnotobiotic calf, GiCoV-OH3 caused severe diarrhea and virus shedding within 2 to 3 days. Sequence comparisons and phylogenetic analyses were performed to assess its genetic relatedness to other CoVs. Molecular characterization confirmed that the new isolate belongs to group 2a of the mammalian CoVs and revealed closer genetic relatedness between GiCoV-OH3 and the enteric BCoVs BCoV-ENT and BCoV-DB2, whereas BCoV-Mebus was more distantly related. Detailed sequence analysis of the GiCoV-OH3 spike gene demonstrated the presence of a deletion in the variable region of the S1 subunit (from amino acid 543 to amino acid 547), which is a region associated with pathogenicity and tissue tropism for other CoVs. The point mutations identified in the structural proteins (by comparing GiCoV-OH3, BCoV-ENT, BCoV-DB2, and BCoV-Mebus) were most conserved among GiCoV-OH3, BCoV-ENT, and BCoV-DB2, whereas most of the point mutations in the nonstructural proteins were unique to GiCoV-OH3. Our results confirm the existence of a bovine-like CoV transmissible to cattle from wild ruminants, namely, giraffes, but with certain genetic properties different from those of BCoVs.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号