首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6559篇
  免费   509篇
  国内免费   2篇
  7070篇
  2023年   31篇
  2022年   96篇
  2021年   160篇
  2020年   109篇
  2019年   130篇
  2018年   162篇
  2017年   142篇
  2016年   233篇
  2015年   333篇
  2014年   334篇
  2013年   576篇
  2012年   576篇
  2011年   510篇
  2010年   340篇
  2009年   267篇
  2008年   412篇
  2007年   407篇
  2006年   379篇
  2005年   279篇
  2004年   294篇
  2003年   270篇
  2002年   248篇
  2001年   57篇
  2000年   45篇
  1999年   62篇
  1998年   59篇
  1997年   54篇
  1996年   46篇
  1995年   31篇
  1994年   43篇
  1993年   43篇
  1992年   27篇
  1991年   26篇
  1990年   26篇
  1989年   20篇
  1988年   16篇
  1987年   18篇
  1986年   14篇
  1985年   12篇
  1984年   22篇
  1983年   16篇
  1982年   20篇
  1981年   17篇
  1980年   8篇
  1979年   9篇
  1978年   15篇
  1977年   13篇
  1975年   8篇
  1974年   10篇
  1973年   7篇
排序方式: 共有7070条查询结果,搜索用时 9 毫秒
81.
We consider the potential role of oscillations in the prefrontal cortex (PFC) in mediating attention, working memory and memory consolidation. Activity in the theta, beta, and gamma bands is related to communication between PFC and different brain areas. While gamma/beta oscillations mediate bottom-up and top-down interactions between PFC and visual cortices, related to attention, theta rhythms are engaged by hippocampal/PFC interplay. These interactions are dynamic, depending on the nature and relevance of the information currently being processed. The profound modifications of the PFC neuronal network associated with changes in oscillatory coherence are controlled by neuromodulators such as dopamine, which thereby allow or prevent the formation of cell assemblies for information encoding and storage.  相似文献   
82.
Regulation of gene expression is a carefully regulated phenomenon in the cell. “Reverse-engineering” algorithms try to reconstruct the regulatory interactions among genes from genome-scale measurements of gene expression profiles (microarrays). Mammalian cells express tens of thousands of genes; hence, hundreds of gene expression profiles are necessary in order to have acceptable statistical evidence of interactions between genes. As the number of profiles to be analyzed increases, so do computational costs and memory requirements. In this work, we designed and developed a parallel computing algorithm to reverse-engineer genome-scale gene regulatory networks from thousands of gene expression profiles. The algorithm is based on computing pairwise Mutual Information between each gene-pair. We successfully tested it to reverse engineer the Mus Musculus (mouse) gene regulatory network in liver from gene expression profiles collected from a public repository. A parallel hierarchical clustering algorithm was implemented to discover “communities” within the gene network. Network communities are enriched for genes involved in the same biological functions. The inferred network was used to identify two mitochondrial proteins.  相似文献   
83.
Functional characterization of CTL against gp100 altered peptide ligands   总被引:2,自引:0,他引:2  
In this study, four modified gp100 peptides were designed by combining amino acids from the melanoma peptide antigen gp100((209-217)) with preferred primary and auxiliary HLA-A *0201 anchor residues previously identified from combinatorial peptide library screening with recombinant HLA-A*0201. These modified peptides demonstrated stronger binding affinity for the HLA-A*0201 molecule compared to wild-type gp100 peptide. Nine CTL lines generated from patients immunized with the g209-2 M peptide and one CTL line from a non-immunized patient were tested for the ability to respond to these modified gp100 peptides. Stimulation of CTL by two of four modified peptides induced higher levels of IFN-gamma secretion than the wild-type gp100 peptide, demonstrating that higher peptide binding affinity for HLA molecules does not necessarily equate to functional activity of CTL. Two major and one minor CTL recognition pattern were observed, irrespective of previous peptide immunization, suggesting that multiple, rationally designed modified tumor peptides for the same epitope stimulate a broad CTL response by activating multiple CTL capable of cross-reacting with the natural antigenic peptide.  相似文献   
84.
Through the classic study of genetics, much has been learned about the regulation and progression of human disease. Specifically, cancer has been defined as a disease driven by genetic alterations, including mutations in tumor-suppressor genes and oncogenes, as well as chromosomal abnormalities. However, the study of normal human development has identified that in addition to classical genetics, regulation of gene expression is also modified by ‘epigenetic’ alterations including chromatin remodeling and histone variants, DNA methylation, the regulation of polycomb group proteins, and the epigenetic function of non-coding RNA. These changes are modifications inherited during both meiosis and mitosis, yet they do not result in alterations of the actual DNA sequence. A number of biological questions are directly influenced by epigenetics, such as how does a cell know when to divide, differentiate or remain quiescent, and more importantly, what happens when these pathways become altered? Do these alterations lead to the development and/or progression of cancer? This review will focus on summarizing the limited current literature involving epigenetic alterations in the context of human cancer stems cells (CSCs). The extent to which epigenetic changes define cell fate, identity, and phenotype are still under intense investigation, and many questions remain largely unanswered. Before discussing epigenetic gene silencing in CSCs, the different classifications of stem cells and their properties will be introduced. This will be followed by an introduction to the different epigenetic mechanisms. Finally, there will be a discussion of the current knowledge of epigenetic modifications in stem cells, specifically what is known from rodent systems and established cancer cell lines, and how they are leading us to understand human stem cells.  相似文献   
85.
Oct4 links multiple epigenetic pathways to the pluripotency network   总被引:1,自引:0,他引:1  
Ding J  Xu H  Faiola F  Ma'ayan A  Wang J 《Cell research》2012,22(1):155-167
  相似文献   
86.
Tumor growth is allowed by its ability to escape immune system surveillance. An important role in determining tumor evasion from immune control might be played by tumor-infiltrating regulatory lymphocytes. This study was aimed at characterizing phenotype and function of CD8+ CD28- T regulatory cells infiltrating human cancer. Lymphocytes infiltrating primitive tumor lesion and/or satellite lymph node from a series of 42 human cancers were phenotypically studied and functionally analyzed by suppressor assays. The unprecedented observation was made that CD8+ CD28- T regulatory lymphocytes are almost constantly present and functional in human tumors, being able to inhibit both T cell proliferation and cytotoxicity. CD4+ CD25+ T regulatory lymphocytes associate with CD8+ CD28- T regulatory cells so that the immunosuppressive activity of tumor-infiltrating regulatory T cell subsets, altogether considered, may become predominant. The infiltration of regulatory T cells seems tumor related, being present in metastatic but not in metastasis-free satellite lymph nodes; it likely depends on both in situ generation (via cytokine production) and recruitment from the periphery (via chemokine secretion). Collectively, these results have pathogenic relevance and implication for immunotherapy of cancer.  相似文献   
87.
A Ciona intestinalis cDNA clone that encodes a protein highly homologous to other tyrosinases was isolated. Northern blot analysis showed that expression of Ciona tyrosinase starts at the early neurula stage and continues throughout the tail-bud and tadpole larval stages. The earliest tyrosinase expression was detected, by in situ hybridization, at the neural plate stage, in pigment precursor cells located along the two neural folds, in the animal region of the embryo. In the course of embryonic development the strong hybridization signal was always localized, within the rostral part of the developing brain, in the pigment precursor cells and was later detected in the otolith and ocellus. These results are discussed in relation to tyrosinase as an early marker of neural induction.  相似文献   
88.
The disruption of cholesterol homeostasis leads to an increase in cholesterol levels which results in the development of cardiovascular disease. Mitogen Inducible Gene 6 (Mig-6) is an immediate early response gene that can be induced by various mitogens, stresses, and hormones. To identify the metabolic role of Mig-6 in the liver, we conditionally ablated Mig-6 in the liver using the Albumin-Cre mouse model (Alb(cre/+)Mig-6(f/f); Mig-6(d/d)). Mig-6(d/d) mice exhibit hepatomegaly and fatty liver. Serum levels of total, LDL, and HDL cholesterol and hepatic lipid were significantly increased in the Mig-6(d/d) mice. The daily excretion of fecal bile acids was significantly decreased in the Mig-6(d/d) mice. DNA microarray analysis of mRNA isolated from the livers of these mice showed alterations in genes that regulate lipid metabolism, bile acid, and cholesterol synthesis, while the expression of genes that regulate biliary excretion of bile acid and triglyceride synthesis showed no difference in the Mig-6(d/d) mice compared to Mig-6(f/f) controls. These results indicate that Mig-6 plays an important role in cholesterol homeostasis and bile acid synthesis. Mice with liver specific conditional ablation of Mig-6 develop hepatomegaly and increased intrahepatic lipid and provide a novel model system to investigate the genetic and molecular events involved in the regulation of cholesterol homeostasis and bile acid synthesis. Defining the molecular mechanisms by which Mig-6 regulates cholesterol homeostasis will provide new insights into the development of more effective ways for the treatment and prevention of cardiovascular disease.  相似文献   
89.
Bacteriophage replication requires specific host‐recognition. Some siphophages harbour a large complex, the baseplate, at the tip of their non‐contractile tail. This baseplate holds receptor binding proteins (RBPs) that can recognize the host cell‐wall polysaccharide (CWPS) and specifically attach the phage to its host. While most phages possess a dedicated RBP, the phage J‐1 that infects Lactobacillus casei seemed to lack one. It has been shown that the phage J‐1 distal tail protein (Dit) plays a role in host recognition and that its sequence comprises two inserted modules compared with ‘classical’ Dits. The first insertion is similar to carbohydrate‐binding modules (CBMs), whereas the second insertion remains undocumented. Here, we determined the structure of the second insertion and found it also similar to several CBMs. Expressed insertion CBM2, but not CBM1, binds to L. casei cells and neutralize phage attachment to the bacterial cell wall and the isolated and purified CWPS of L. casei BL23 prevents CBM2 attachment to the host. Electron microscopy single particle reconstruction of the J‐1 virion baseplate revealed that CBM2 is projected at the periphery of Dit to optimally bind the CWPS receptor. Taken together, these results identify J‐1 evolved Dit as the phage RBP.  相似文献   
90.
We report here the results of a systematic high-resolution X-ray crystallographic analysis of complexes of the hepatitis C virus (HCV) RNA polymerase with ribonucleoside triphosphates (rNTPs) and divalent metal ions. An unexpected observation revealed by this study is the existence of a specific rGTP binding site in a shallow pocket at the molecular surface of the enzyme, 30 A away from the catalytic site. This previously unidentified rGTP pocket, which lies at the interface between fingers and thumb, may be an allosteric regulatory site and could play a role in allowing alternative interactions between the two domains during a possible conformational change of the enzyme required for efficient initiation. The electron density map at 1.7-A resolution clearly shows the mode of binding of the guanosine moiety to the enzyme. In the catalytic site, density corresponding to the triphosphates of nucleotides bound to the catalytic metals was apparent in each complex with nucleotides. Moreover, a network of triphosphate densities was detected; these densities superpose to the corresponding moieties of the nucleotides observed in the initiation complex reported for the polymerase of bacteriophage phi6, strengthening the proposal that the two enzymes initiate replication de novo by similar mechanisms. No equivalent of the protein stacking platform observed for the priming nucleotide in the phi6 enzyme is present in HCV polymerase, however, again suggesting that a change in conformation of the thumb domain takes place upon template binding to allow for efficient de novo initiation of RNA synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号