全文获取类型
收费全文 | 168篇 |
免费 | 28篇 |
专业分类
196篇 |
出版年
2021年 | 2篇 |
2020年 | 3篇 |
2017年 | 5篇 |
2016年 | 3篇 |
2015年 | 3篇 |
2014年 | 7篇 |
2013年 | 11篇 |
2012年 | 9篇 |
2011年 | 15篇 |
2010年 | 10篇 |
2009年 | 5篇 |
2008年 | 7篇 |
2007年 | 10篇 |
2006年 | 4篇 |
2005年 | 3篇 |
2004年 | 7篇 |
2003年 | 10篇 |
2002年 | 5篇 |
2001年 | 6篇 |
2000年 | 5篇 |
1999年 | 4篇 |
1998年 | 3篇 |
1996年 | 4篇 |
1995年 | 2篇 |
1992年 | 4篇 |
1991年 | 1篇 |
1990年 | 5篇 |
1988年 | 2篇 |
1987年 | 3篇 |
1986年 | 5篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1976年 | 1篇 |
1975年 | 2篇 |
1974年 | 1篇 |
1972年 | 2篇 |
1971年 | 1篇 |
1970年 | 1篇 |
1968年 | 1篇 |
1966年 | 2篇 |
1963年 | 2篇 |
1959年 | 2篇 |
1955年 | 1篇 |
1940年 | 1篇 |
1931年 | 1篇 |
排序方式: 共有196条查询结果,搜索用时 15 毫秒
61.
N. J. Spiller L. Koenders W. F. Tjallingii 《Entomologia Experimentalis et Applicata》1990,55(2):101-104
A new waveform, pattern G, detected during recording of electrical penetration graphs (EPG's) from aphids was strongly correlated with uptake from radioactively labelled artificial diets. During pattern G, maxillary stylet tips were located within xylem conductive elements and it was concluded that pattern G is representative of ingestion of xylem sap. Dehydrated aphids showed a higher incidence and greater duration of xylem uptake, suggesting that its occurrence is related to the water balance of the insect.
Résumé Une nouvelle onde, de type G, décelée pendant l'enregistrement des électropénétrogrammes (EPG's) des pucerons est nettement associée à la prise d'aliments marqués radioactivement. Pendant l'onde G, les extrémités des stylets maxillaires sont situées dans les éléments conducteurs du xylème et l'on en conclu que l'onde G représente l'ingestion du contenu du xylème. Les pucerons déshydratés présentent une plus grande fréquence et une durée plus longue d'absorption de xylème, ce qui suggère qu'elle est liée à l'équilibre hydrique de l'insecte.相似文献
62.
Marko T. Ahonen Iulia Diaconu Sari Pesonen Anna Kanerva Marc Baumann Suvi T. Parviainen Brad Spiller Vincenzo Cerullo Akseli Hemminki 《PloS one》2010,5(9)
Background
Adenoviruses are attractive vectors for gene therapy because of their stability in vivo and the possibility of production at high titers. Despite exciting preclinical data with various approaches, there are only a few examples of clear efficacy in clinical trials. Effective gene delivery to target cells remains the key variable determining efficacy and thus enhanced transduction methods are important.Methods/Results
We found that heated serum could enhance adenovirus 5 mediated gene delivery up to twentyfold. A new protein-level interaction was found between fiber knob and serum transthyretin, but this was not responsible for the observed effect. Instead, we found that heating caused the calcium and phosphate present in the serum mix to precipitate, and this was responsible for enhanced gene delivery. This finding could have relevance for designing preclinical experiments with adenoviruses, since calcium and phosphate are present in many solutions. To translate this into an approach potentially testable in patients, we used calcium gluconate in phosphate buffered saline, both of which are clinically approved, to increase adenoviral gene transfer up to 300-fold in vitro. Gene transfer was increased with or without heating and in a manner independent from the coxsackie-adenovirus receptor. In vivo, in mouse studies, gene delivery was increased 2-, 110-, 12- and 13-fold to tumors, lungs, heart and liver and did not result in increased pro-inflammatory cytokine induction. Antitumor efficacy of a replication competent virus was also increased significantly.Conclusion
In summary, adenoviral gene transfer and antitumor efficacy can be enhanced by calcium gluconate in phosphate buffered saline. 相似文献63.
Martha Triantafilou Benjamin De Glanville Ali F. Aboklaish O. Brad Spiller Sailesh Kotecha Kathy Triantafilou 《PloS one》2013,8(4)
Ureaplasma species are the most frequently isolated microorganisms inside the amniotic cavity and have been associated with spontaneous abortion, chorioamnionitis, premature rupture of the membranes (PROM), preterm labour (PL) pneumonia in neonates and bronchopulmonary dysplasia in neonates. The mechanisms by which Ureaplasmas cause such diseases remain unclear, but it is believed that inappropriate induction of inflammatory responses is involved, triggered by the innate immune system. As part of its mechanism of activation, the innate immune system employs germ-lined encoded receptors, called pattern recognition receptors (PRRs) in order to “sense” pathogens. One such family of PRRs are the Toll like receptor family (TLR). In the current study we aimed to elucidate the role of TLRs in Ureaplasma-induced inflammation in human amniotic epithelial cells. Using silencing, as well as human embryonic kidney (HEK) transfected cell lines, we demonstrate that TLR2, TLR6 and TLR9 are involved in the inflammatory responses against Ureaplasma parvum and urealyticum serovars. Ureaplasma lipoproteins, such as Multiple Banded antigen (MBA), trigger responses via TLR2/TLR6, whereas the whole bacterium is required for TLR9 activation. No major differences were observed between the different serovars. Cell activation by Ureaplasma parvum and urealyticum seem to require lipid raft function and formation of heterotypic receptor complexes comprising of TLR2 and TLR6 on the cell surface and TLR9 intracellularly. 相似文献
64.
LeNoue-Newton M Watkins GR Zou P Germane KL McCorvey LR Wadzinski BE Spiller BW 《The Journal of biological chemistry》2011,286(20):17665-17671
Protein phosphatase 2A (PP2A) is regulated through a variety of mechanisms, including post-translational modifications and association with regulatory proteins. Alpha4 is one such regulatory protein that binds the PP2A catalytic subunit (PP2Ac) and protects it from polyubiquitination and degradation. Alpha4 is a multidomain protein with a C-terminal domain that binds Mid1, a putative E3 ubiquitin ligase, and an N-terminal domain containing the PP2Ac-binding site. In this work, we present the structure of the N-terminal domain of mammalian Alpha4 determined by x-ray crystallography and use double electron-electron resonance spectroscopy to show that it is a flexible tetratricopeptide repeat-like protein. Structurally, Alpha4 differs from its yeast homolog, Tap42, in two important ways: 1) the position of the helix containing the PP2Ac-binding residues is in a more open conformation, showing flexibility in this region; and 2) Alpha4 contains a ubiquitin-interacting motif. The effects of wild-type and mutant Alpha4 on PP2Ac ubiquitination and stability were examined in mammalian cells by performing tandem ubiquitin-binding entity precipitations and cycloheximide chase experiments. Our results reveal that both the C-terminal Mid1-binding domain and the PP2Ac-binding determinants are required for Alpha4-mediated protection of PP2Ac from polyubiquitination and degradation. 相似文献
65.
Archuleta TL Du Y English CA Lory S Lesser C Ohi MD Ohi R Spiller BW 《The Journal of biological chemistry》2011,286(39):33992-33998
Chlamydia species are obligate intracellular pathogens that utilize a type three secretion system to manipulate host cell processes. Genetic manipulations are currently not possible in Chlamydia, necessitating study of effector proteins in heterologous expression systems and severely complicating efforts to relate molecular strategies used by Chlamydia to the biochemical activities of effector proteins. CopN is a chlamydial type three secretion effector that is essential for virulence. Heterologous expression of CopN in cells results in loss of microtubule spindles and metaphase plate formation and causes mitotic arrest. CopN is a multidomain protein with similarity to type three secretion system "plug" proteins from other organisms but has functionally diverged such that it also functions as an effector protein. We show that CopN binds directly to αβ-tubulin but not to microtubules (MTs). Furthermore, CopN inhibits tubulin polymerization by sequestering free αβ-tubulin, similar to one of the mechanisms utilized by stathmin. Although CopN and stathmin share no detectable sequence identity, both influence MT formation by sequestration of αβ-tubulin. CopN displaces stathmin from preformed stathmin-tubulin complexes, indicating that the proteins bind overlapping sites on tubulin. CopN is the first bacterial effector shown to disrupt MT formation directly. This recognition affords a mechanistic understanding of a strategy Chlamydia species use to manipulate the host cell cycle. 相似文献
66.
Rory N. Pruitt Benjamin Chagot Michael Cover Walter J. Chazin Ben Spiller D. Borden Lacy 《The Journal of biological chemistry》2009,284(33):21934-21940
The action of Clostridium difficile toxins A and B depends on inactivation of host small G-proteins by glucosylation. Cellular inositol hexakisphosphate (InsP6) induces an autocatalytic cleavage of the toxins, releasing an N-terminal glucosyltransferase domain into the host cell cytosol. We have defined the cysteine protease domain (CPD) responsible for autoprocessing within toxin A (TcdA) and report the 1.6 Å x-ray crystal structure of the domain bound to InsP6. InsP6 is bound in a highly basic pocket that is separated from an unusual active site by a β-flap structure. Functional studies confirm an intramolecular mechanism of cleavage and highlight specific residues required for InsP6-induced TcdA processing. Analysis of the structural and functional data in the context of sequences from similar and diverse origins highlights a C-terminal extension and a π-cation interaction within the β-flap that appear to be unique among the large clostridial cytotoxins.Clostridium difficile is a Gram-positive, spore-forming anaerobe that infects the colon and causes a range of disorders, including diarrhea, pseudomembranous colitis, and toxic megacolon (1, 2). Two large toxins, TcdA2 and TcdB (308 and 270 kDa, respectively) are recognized as the main virulence factors of C. difficile, although their relative importance is the subject of on-going study (3, 4). These proteins belong to a class of homologous toxins called large clostridial toxins (LCTs) and have been classified more broadly as AB toxins, wherein a B moiety is involved in the delivery of an enzymatic A moiety into the cytosol of a target cell. In LCTs, the A subunit is an N-terminal glucosyltransferase that inactivates small G-proteins, such as Rho, leading to cell rounding and apoptosis of the intoxicated cell (5, 6). The B subunit corresponds to the remainder of the toxin and is responsible for binding the target cell through a C-terminal receptor-binding domain (7–9) and forming the membrane pore needed for translocation of the A subunit (10, 11). Unlike other known AB toxins, the glucosyltransferase A domains of LCTs are released from the B subunits by an autoproteolytic cleavage event (12). Cleavage is triggered by host inositol phosphates and the reducing environment of the cytosol (12).In LCTs, autoproteolysis has been attributed to a cysteine protease activity located within the N-terminal region of the B subunit (13). This region was identified based on homology with the cysteine protease domain (CPD) found in the multifunctional autoprocessing repeats in toxins (MARTX) toxins from Gram-negative bacteria (14). Autoprocessing in the MARTX toxin from Vibrio cholera (VcRTx) is also stimulated by InsP6 (15). A recent crystal structure of VcRTx CPD bound to InsP6 suggests a novel mechanism of InsP6-induced allosteric activation (16). The CPDs of TcdA and VcRTx share only 19% sequence identity. To gain insight into the mechanistic commonalities between these entirely different toxins and to delineate the LCT-specific modes of InsP6-induced processing, we performed structural and functional analyses on the cysteine protease from TcdA. 相似文献
67.
Centromere localization and function of Mis18 requires Yippee‐like domain‐mediated oligomerization
下载免费PDF全文
![点击此处可从《EMBO reports》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Rachael Barton Frances Spiller Raghavendran Kulasegaran‐Shylini Guoda Radaviciute Robin C Allshire A Arockia Jeyaprakash 《EMBO reports》2016,17(4):496-507
Mis18 is a key regulator responsible for the centromere localization of the CENP‐A chaperone Scm3 in Schizosaccharomyces pombe and HJURP in humans, which establishes CENP‐A chromatin that defines centromeres. The molecular and structural determinants of Mis18 centromere targeting remain elusive. Here, by combining structural, biochemical, and yeast genetic studies, we show that the oligomerization of S. pombe Mis18, mediated via its conserved N‐terminal Yippee‐like domain, is crucial for its centromere localization and function. The crystal structure of the N‐terminal Yippee‐like domain reveals a fold containing a cradle‐shaped pocket that is implicated in protein/nucleic acid binding, which we show is required for Mis18 function. While the N‐terminal Yippee‐like domain forms a homodimer in vitro and in vivo, full‐length Mis18, including the C‐terminal α‐helical domain, forms a homotetramer in vitro. We also show that the Yippee‐like domains of human Mis18α/Mis18β interact to form a heterodimer, implying a conserved structural theme for Mis18 regulation. 相似文献
68.
69.
Benthem L Keizer K Wiegman CH de Boer SF Strubbe JH Steffens AB Kuipers F Scheurink AJ 《American journal of physiology. Endocrinology and metabolism》2000,279(6):E1286-E1293
We tested the hypothesis that excessive portal venous supply of long-chain fatty acids to the liver contributes to the development of insulin resistance via activation of the hypothalamus-pituitary-adrenal axis (HPA axis) and sympathetic system. Rats received an intraportal infusion of the long-chain fatty acid oleate (150 nmol/min, 24 h), the medium-chain fatty acid caprylate, or the solvent. Corticosterone (Cort) and norepinephrine (NE) were measured as indexes for HPA axis and sympathetic activity, respectively. Insulin sensitivity was assessed by means of an intravenous glucose tolerance test (IVGTT). Oleate infusion induced increases in plasma Cort (Delta = 13.5 +/- 3.6 microg/dl; P < 0.05) and NE (Delta = 235 +/- 76 ng/l; P < 0.05), whereas caprylate and solvent had no effect. The area under the insulin response curve to the IVGTT was larger in the oleate-treated group than in the caprylate and solvent groups (area = 220 +/- 35 vs. 112 +/- 13 and 106 +/- 8, respectively, P < 0.05). The area under the glucose response curves was comparable [area = 121 +/- 13 (oleate) vs. 135 +/- 20 (caprylate) and 96 +/- 11 (solvent)]. The results are consistent with the concept that increased portal free fatty acid is involved in the induction of visceral obesity-related insulin resistance via activation of the HPA axis and sympathetic system. 相似文献
70.
Inhibition of coxsackie B virus infection by soluble forms of its receptors: binding affinities, altered particle formation, and competition with cellular receptors 总被引:6,自引:0,他引:6
下载免费PDF全文
![点击此处可从《Journal of virology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Goodfellow IG Evans DJ Blom AM Kerrigan D Miners JS Morgan BP Spiller OB 《Journal of virology》2005,79(18):12016-12024
We previously reported that soluble decay-accelerating factor (DAF) and coxsackievirus-adenovirus receptor (CAR) blocked coxsackievirus B3 (CVB3) myocarditis in mice, but only soluble CAR blocked CVB3-mediated pancreatitis. Here, we report that the in vitro mechanisms of viral inhibition by these soluble receptors also differ. Soluble DAF inhibited virus infection through the formation of reversible complexes with CVB3, while binding of soluble CAR to CVB induced the formation of altered (A) particles with a resultant irreversible loss of infectivity. A-particle formation was characterized by loss of VP4 from the virions and required incubation of CVB3-CAR complexes at 37 degrees C. Dimeric soluble DAF (DAF-Fc) was found to be 125-fold-more effective at inhibiting CVB3 than monomeric DAF, which corresponded to a 100-fold increase in binding affinity as determined by surface plasmon resonance analysis. Soluble CAR and soluble dimeric CAR (CAR-Fc) bound to CVB3 with 5,000- and 10,000-fold-higher affinities than the equivalent forms of DAF. While DAF-Fc was 125-fold-more effective at inhibiting virus than monomeric DAF, complement regulation by DAF-Fc was decreased 4 fold. Therefore, while the virus binding was a cooperative event, complement regulation was hindered by the molecular orientation of DAF-Fc, indicating that the regions responsible for complement regulation and virus binding do not completely overlap. Relative contributions of CVB binding affinity, receptor binding footprint on the virus capsid, and induction of capsid conformation alterations for the ability of cellular DAF and CAR to act as receptors are discussed. 相似文献