首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   38篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   8篇
  2007年   2篇
  2006年   6篇
  2005年   4篇
  2004年   7篇
  2003年   6篇
  2002年   6篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   6篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   8篇
  1991年   8篇
  1990年   6篇
  1989年   9篇
  1988年   6篇
  1987年   6篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   6篇
  1976年   3篇
  1975年   2篇
  1974年   5篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1966年   2篇
排序方式: 共有185条查询结果,搜索用时 24 毫秒
21.
22.
Various genes related to early events in human gustation have recently been discovered, yet a thorough understanding of taste transduction is hampered by gaps in our knowledge of the signaling chain. As a first step toward gaining additional insight, the expression specificity of genes in human taste tissue needs to be determined. To this end, a fungiform papillae cDNA library has been generated and analyzed. For validation of the library, taste-related gene probes were used to detect known molecules. Subsequently, DNA sequence analysis was performed to identify further candidates. Of 987 clones sequenced, clustering results in 288 contigs. Comparison of these contigs with genomic databases reveals that 207 contigs (71.9%) match known genes, 16 (5.6%) match hypothetical genes, eight (2.8%) match repetitive sequences and 57 (19.8%) have no or low similarity to annotated genes. The results indicate that despite a high level of redundancy, this human fungiform cDNA library contains specific taste markers and is valuable for investigation of both known and novel taste-related genes.  相似文献   
23.
The success or failure of interspecific crosses is vital to evolution and to agriculture, but much remains to be learned about the nature of hybridization barriers. Several mechanisms have been proposed to explain postzygotic barriers, including negative interactions between diverged sequences, global genome rearrangements, and widespread epigenetic reprogramming. Another explanation is imbalance of paternally and maternally imprinted genes in the endosperm. Interspecific crosses between diploid Arabidopsis thaliana as the seed parent and tetraploid Arabidopsis arenosa as the pollen parent produced seeds that aborted with the same paternal excess endosperm phenotype seen in crosses between diploid and hexaploid A. thaliana. Doubling maternal ploidy restored seed viability and normal endosperm morphology. However, substituting a hypomethylated tetraploid A. thaliana seed parent reestablished the hybridization barrier by causing seed abortion and a lethal paternal excess phenotype. We conclude from these findings that the dominant cause of seed abortion in the diploid A. thaliana x tetraploid A. arenosa cross is parental genomic imbalance. Our results also demonstrate that manipulation of DNA methylation can be sufficient to erect hybridization barriers, offering a potential mechanism for speciation and a means of controlling gene flow between species.  相似文献   
24.
To determine whether prior exposure to Nearctic Ixodes vector ticks protects native reservoir mice from tick-borne infection by Lyme disease spirochetes, we compared their infectivities for white-footed mice and laboratory mice that had been repeatedly infested by noninfected deer ticks. Nymphal ticks readily engorged on tick-exposed laboratory mice, but their feeding success on white-footed mice progressively declined. Tick-borne spirochetes readily infected previously tick-infested mice. Thus, prior infestation by Nearctic ticks does not protect sympatric reservoir mice or Palearctic laboratory mice from infection by sympatric tick-borne spirochetes.  相似文献   
25.
26.
27.
28.
Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility in women. It is also associated with metabolic disturbances that place women at increased risk for obesity and type 2 diabetes. There is strong evidence for familial clustering of PCOS and a genetic predisposition. However, the gene(s) responsible for the PCOS phenotypes have not been elucidated. This two-phase family-based and case-control genetic study was designed to address the question of whether SNPs identified as susceptibility loci for obesity in genome-wide association studies (GWAS) are also associated with PCOS and elevated BMI. Members of 439 families having at least one offspring with PCOS were genotyped for 15 SNPs previously shown to be associated with obesity. Linkage and association with PCOS was assessed using the transmission/disequilibrium test (TDT). These SNPs were also analyzed in an independent case-control study involving 395 women with PCOS and 176 healthy women with regular menstrual cycles. Only one of these 15 SNPs (rs2815752 in NEGR1) was found to have a nominally significant association with PCOS (χ2 = 6.11, P = 0.013), but this association failed to replicate in the case-control study. While not associated with PCOS itself, five SNPs in FTO and two in MC4R were associated with BMI as assessed with a quantitative-TDT analysis, several of which replicated association with BMI in the case-control cohort. These findings demonstrate that certain SNPs associated with obesity contribute to elevated BMI in PCOS, but do not appear to play a major role in PCOS per se. These findings support the notion that PCOS phenotypes are a consequence of an oligogenic/polygenic mechanism.  相似文献   
29.
RAMPs (1-3) are single transmembrane accessory proteins crucial for plasma membrane expression, which also determine receptor phenotype of various G-protein-coupled receptors. For example, adrenomedullin receptors are comprised of RAMP2 or RAMP3 (AM1R and AM2R, respectively) and calcitonin receptor-like receptor (CRLR), while a CRLR heterodimer with RAMP1 yields a calcitonin gene-related peptide receptor. The major aim of this study was to determine the role of RAMPs in receptor trafficking. We hypothesized that a PDZ type I domain present in the C terminus of RAMP3, but not in RAMP1 or RAMP2, leads to protein-protein interactions that determine receptor trafficking. Employing adenylate cyclase assays, radioligand binding, and immunofluorescence microscopy, we observed that in HEK293 cells the CRLR-RAMP complex undergoes agonist-stimulated desensitization and internalization and fails to resensitize (i.e. degradation of the receptor complex). Co-expression of N-ethylmaleimide-sensitive factor (NSF) with the CRLR-RAMP3 complex, but not CRLR-RAMP1 or CRLR-RAMP2 complex, altered receptor trafficking to a recycling pathway. Mutational analysis of RAMP3, by deletion and point mutations, indicated that the PDZ motif of RAMP3 interacts with NSF to cause the change in trafficking. The role of RAMP3 and NSF in AM2R recycling was confirmed in rat mesangial cells, where RNA interference with RAMP3 and pharmacological inhibition of NSF both resulted in a lack of receptor resensitization/recycling after agonist-stimulated desensitization. These findings provide the first functional difference between the AM1R and AM2R at the level of post-endocytic receptor trafficking. These results indicate a novel function for RAMP3 in the post-endocytic sorting of the AM-R and suggest a broader regulatory role for RAMPs in receptor trafficking.  相似文献   
30.
In both flowering plants and mammals, DNA methylation is involved in silencing alleles of imprinted genes, but surprising differences in imprinting control are emerging between the two taxa which may be traced to differences in their life cycles. Imprinted gene expression in plants occurs in the endosperm, a separate fertilisation product which transmits nutrients to the embryo and does not contribute a genome to the next generation. Regulation of expression of the known imprinted genes in Arabidopsis involves a cascade of gene expression beginning in the gametophyte, a haploid life phase interposed between the meiotic products and the gametes, which evolved from free-living organisms that constitute the dominant life phase of lower plants. Although the gametophytes of flowering plants are highly reduced they still express large numbers of genes, perhaps reflecting their evolutionary legacy, and which may now be recruited for control of imprinting. Strikingly, the genes at the top of the expression cascade appear to be specifically activated by demethylation, rather than targeted for silencing. Unlike in mammals, there is no evidence for global resetting of methylation in plants, and although imprinting involves the activity of a maintenance methyltransferase, de novo methyltransferases do not appear to be required. Plants do not set aside a germline; instead the cells that undergo meiosis to produce gametophytes differentiate in the adult plant during flower development. Both the late differentiation of the lineage producing germ cells, and the extent of gene expression during the haploid phase, may be incompatible with global resetting of methylation. Resetting may be unnecessary in any case because the adult plant expresses imprinted loci either biallelically or not at all, suggesting there is no chromosomal memory of parent-of-origin in the lineage that produces the gametophytes. Thus several features of the plant life cycle may account for the different strategies used by plants and animals to regulate parent-specific gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号