首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   48篇
  2019年   3篇
  2017年   3篇
  2016年   2篇
  2015年   8篇
  2014年   7篇
  2013年   6篇
  2012年   10篇
  2011年   10篇
  2010年   8篇
  2009年   4篇
  2008年   8篇
  2007年   6篇
  2006年   13篇
  2005年   9篇
  2004年   11篇
  2003年   8篇
  2002年   7篇
  2001年   13篇
  2000年   10篇
  1999年   17篇
  1998年   8篇
  1997年   5篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   12篇
  1991年   4篇
  1990年   7篇
  1989年   6篇
  1988年   7篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1982年   7篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1978年   4篇
  1975年   2篇
  1974年   3篇
  1973年   7篇
  1972年   2篇
  1971年   5篇
  1968年   3篇
  1967年   3篇
  1966年   7篇
  1965年   2篇
  1947年   2篇
排序方式: 共有309条查询结果,搜索用时 468 毫秒
101.
102.
Brown adipocytes increase energy production in response to induction of PGC-1alpha, a dominant regulator of energy metabolism. We have found that the orphan nuclear receptor SHP (NR0B2) is a negative regulator of PGC-1alpha expression in brown adipocytes. Mice lacking SHP show increased basal expression of PGC-1alpha, increased energy expenditure, and resistance to diet-induced obesity. Increased PGC-1alpha expression in SHP null brown adipose tissue is not due to beta-adrenergic activation, since it is also observed in primary cultures of SHP(-/-) brown adipocytes that are not exposed to such stimuli. In addition, acute inhibition of SHP expression in cultured wild-type brown adipocytes increases basal PGC-1alpha expression, and SHP overexpression in SHP null brown adipocytes decreases it. The orphan nuclear receptor ERRgamma is expressed in BAT and its transactivation of the PGC-1alpha promoter is potently inhibited by SHP. We conclude that SHP functions as a negative regulator of energy production in BAT.  相似文献   
103.
104.
105.
The disruption of the gene encoding the Dictyostelium Ras subfamily protein, RasC results in a strain that fails to aggregate with defects in both cAMP signal relay and chemotaxis. Restriction enzyme mediated integration disruption of a second gene in the rasC(-) strain resulted in cells that were capable of forming multicellular structures in plaques on bacterial lawns. The disrupted gene, designated pikD(1), encodes a member of the phosphatidyl-inositol-4-kinase beta subfamily. Although the rasC(-)/pikD(1) cells were capable of progressing through early development, when starved on a plastic surface under submerged conditions, they did not form aggregation streams or exhibit pulsatile motion. The rasC(-)/pikD(1) cells were extremely efficient in their ability to chemotax to cAMP in a spatial gradient, although the reduced phosphorylation of PKB in response to cAMP observed in rasC(-) cells, was unchanged. In addition, the activation of adenylyl cyclase, which was greatly reduced in the rasC(-) cells, was only minimally increased in the rasC(-)/pikD(1) strain. Thus, although the rasC(-)/pikD(-) cells were capable of associating to form multicellular structures, normal cell signaling was clearly not restored. The disruption of the pikD gene in a wild type background resulted in a strain that was delayed in aggregation and formed large aggregation streams, when starved on a plastic surface under submerged conditions. This strain also exhibited a slight defect in terminal development. In conclusion, disruption of the pikD gene in a rasC(-) strain resulted in cells that were capable of forming multicellular structures, but which did so in the absence of normal signaling and aggregation stream formation.  相似文献   
106.
107.
To define the role that RasC plays in motility and chemotaxis, the behavior of a rasC null mutant, rasC-, in buffer and in response to the individual spatial, temporal, and concentration components of a natural cyclic AMP (cAMP) wave was analyzed by using computer-assisted two-dimensional and three-dimensional motion analysis systems. These quantitative studies revealed that rasC- cells translocate at the same velocity and exhibit chemotaxis up spatial gradients of cAMP with the same efficiency as control cells. However, rasC- cells exhibit defects in maintaining anterior-posterior polarity along the substratum and a single anterior pseudopod when translocating in buffer in the absence of an attractant. rasC- cells also exhibit defects in their responses to both the increasing and decreasing temporal gradients of cAMP in the front and the back of a wave. These defects result in the inability of rasC- cells to exhibit chemotaxis in a natural wave of cAMP. The inability to respond normally to temporal gradients of cAMP results in defects in the organization of the cytoskeleton, most notably in the failure of both F actin and myosin II to exit the cortex in response to the decreasing temporal gradient of cAMP in the back of the wave. While the behavioral defect in the front of the wave is similar to that of the myoA-/myoF- myosin I double mutant, the behavioral and cytoskeletal defects in the back of the wave are similar to those of the S13A myosin II regulatory light-chain phosphorylation mutant. Expression array data support the premise that the behavioral defects exhibited by the rasC- mutant are the immediate result of the absence of RasC function.  相似文献   
108.
Dictyostelium RasG has been implicated in the regulation of a variety of cellular processes, including the initiation of development, cell movement, and cytokinesis, but the molecular components of the signaling pathways involved are largely unknown. We used a tetracycline-regulated protein expression system to study the effect of activated RasG, RasG(G12T), expression on the phosphorylation state of Dictyostelium proteins. Over 70 vegetative phosphoprotein components were resolved by two-dimensional (2-D) immunoblot analysis and of these 16 phosphothreonine and three phosphotyrosine protein components were found to reproducibly change upon RasG(G12T) expression. Thirteen of these were recovered from 2-D gels and identified by mass spectrometry of in-gel tryptic digestions. The proteins identified include the signaling proteins RasGEF-R and protein kinase B, the adhesion protein DdCAD-1, the cytoskeletal protein actin, the mitochondrial division protein FtsZA, and proteins involved in translation and metabolism. In addition to the direct demonstration of the phosphorylation of putative downstream targets of RasG activation, these findings reveal previously undetected phosphorylation of several proteins.  相似文献   
109.
We have found that sporulation in Bacillus subtilis crsA47 mutants does not require the sigma(H)-dependent promoter of the spo0A gene. This implies that the glucose-resistant sporulation phenotype of this strain is not related to the switch from the vegetative-stage sigma(A)-dependent promoter to the sigma(H)-dependent promoter at the spo0A gene.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号