首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   28篇
  180篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   3篇
  2014年   7篇
  2013年   7篇
  2012年   10篇
  2011年   5篇
  2010年   8篇
  2009年   7篇
  2008年   8篇
  2007年   7篇
  2006年   7篇
  2005年   3篇
  2004年   6篇
  2003年   6篇
  2002年   6篇
  2001年   5篇
  2000年   8篇
  1999年   6篇
  1998年   5篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1989年   2篇
  1988年   6篇
  1987年   1篇
  1986年   2篇
  1982年   2篇
  1977年   5篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1967年   1篇
  1966年   1篇
  1957年   2篇
  1951年   1篇
  1945年   1篇
  1938年   1篇
  1930年   1篇
  1918年   2篇
排序方式: 共有180条查询结果,搜索用时 15 毫秒
81.
Severe droughts have been associated with regional-scale forest mortality worldwide. Climate change is expected to exacerbate regional mortality events; however, prediction remains difficult because the physiological mechanisms underlying drought survival and mortality are poorly understood. We developed a hydraulically based theory considering carbon balance and insect resistance that allowed development and examination of hypotheses regarding survival and mortality. Multiple mechanisms may cause mortality during drought. A common mechanism for plants with isohydric regulation of water status results from avoidance of drought-induced hydraulic failure via stomatal closure, resulting in carbon starvation and a cascade of downstream effects such as reduced resistance to biotic agents. Mortality by hydraulic failure per se may occur for isohydric seedlings or trees near their maximum height. Although anisohydric plants are relatively drought-tolerant, they are predisposed to hydraulic failure because they operate with narrower hydraulic safety margins during drought. Elevated temperatures should exacerbate carbon starvation and hydraulic failure. Biotic agents may amplify and be amplified by drought-induced plant stress. Wet multidecadal climate oscillations may increase plant susceptibility to drought-induced mortality by stimulating shifts in hydraulic architecture, effectively predisposing plants to water stress. Climate warming and increased frequency of extreme events will probably cause increased regional mortality episodes. Isohydric and anisohydric water potential regulation may partition species between survival and mortality, and, as such, incorporating this hydraulic framework may be effective for modeling plant survival and mortality under future climate conditions.  相似文献   
82.
Plant xylem must balance efficient delivery of water to the canopy against protection from air entry into the conduits via air-seeding. We investigated the relationship between tracheid allometry, end wall pitting, safety from air-seeding, and the hydraulic efficiency of conifer wood in order to better understand the trade-offs between effective transport and protection against air entry. Root and stem wood were sampled from conifers belonging to the Pinaceae, Cupressaceae, Podocarpaceae, and Araucariaceae. Hydraulic resistivity of tracheids decreased with increasing tracheid diameter and width, with 64 ± 4% residing in the end wall pitting regardless of tracheid size or phylogenetic affinity. This end-wall percentage was consistent with a near-optimal scaling between tracheid diameter and length that minimized flow resistance for a given tracheid length. There was no evidence that tracheid size and hydraulic efficiency were constrained by the role of the pits in protecting against cavitation by air-seeding. An increase in pit area resistance with safety from cavitation was observed only for species of the northern hemisphere (Pinaceae and Cupressaceae), but this variable was independent of tracheid size, and the increase in pit resistance did not significantly influence tracheid resistance. In contrast to recent work on angiosperm vessels, protection against air-seeding in conifer tracheids appears to be uncoupled from conduit size and conducting efficiency.  相似文献   
83.
Seasonal variation in nest success is well documented for many bird species. Predator behavior has been suggested as a mechanism behind these seasonal patterns, but this hypothesis has received little attention. Here we test the hypothesis that predator behavior produces seasonal patterns of nest success by relating nest success of northern cardinals Cardinalis cardinalis to the activity of Texas rat snakes Elaphe obsoleta. Cardinal nest survival varied over the season and was lower when rat snakes were more active. The probability that a nest survived was associated both with when cardinals nested and with nest height, indicating that both temporal and habitat factors affected predation risk. The increased success of higher nests could be associated with some aspect of rat snakes’ climbing ability. In combination with results for two other species studied previously at the same location, our results for cardinals suggest that the specific seasonal pattern of nest success expected for a given bird species will depend on how its nesting season coincides with predator activity. Determining the generality of seasonal variation in predator behavior as a mechanism for producing seasonal patterns of avian nest success will require additional studies that investigate birds and their nest predators simultaneously.  相似文献   
84.
The cost of brood parasitism favors the evolution of host behaviors that reduce the risk or expense of being parasitized. Endangered Black‐capped Vireos (Vireo atricapilla) have likely coexisted with brood‐parasitic Brown‐headed Cowbirds (Molothrus ater) for more than 10,000 yr, so it is likely that they have evolved anti‐parasitic behaviors. We monitored naturally parasitized and non‐parasitized vireo nests to evaluate factors that might explain parasitism risk and nest desertion behavior and also assessed whether behaviors that occurred after being parasitized improved reproductive output. Vireos reduced the risk of parasitism by initiating breeding early and nesting farther from open grasslands and edges of woody thickets. Post‐laying, nest desertion was common (70% of parasitized nests) and increased with both the presence of at least one cowbird egg in nests and clutch reduction by cowbirds. After accounting for these cues, desertion was also more likely at nests located closer to cowbird foraging habitat and below potential cowbird vantage points. Despite its regularity, desertion did not appear to provide reproductive benefits to vireos. Instead, accepting cowbird eggs was a more effective strategy because 42% of cowbird eggs did not hatch. Furthermore, cowbird eggs were somehow ejected from at least three vireo nests. Our results suggest that Black‐capped Vireos can behave in a variety of ways that reduce the impact of brood parasitism, with frontline behaviors appearing to provide the greatest benefit. Our results also suggest that habitat management should focus on providing Black‐capped Vireos with adequate breeding habitat that provides access to safe nesting sites, and with high‐quality wintering habitat that allows vireos to migrate and initiate nesting early.  相似文献   
85.
Development is punctuated by morphogenetic rearrangements of epithelial tissues, including detachment of motile cells during epithelial–mesenchymal transition (EMT). Dramatic actin rearrangements occur as cell–cell junctions are dismantled and cells become independently motile during EMT. Characterizing dynamic actin rearrangements and identifying actin machinery driving these rearrangements is essential for understanding basic mechanisms of cell–cell junction remodeling. Using immunofluorescence and live cell imaging of scattering MDCK cells we examine dynamic actin rearrangement events during EMT and demonstrate that zyxin–VASP complexes mediate linkage of dynamic medial actin networks to adherens junction (AJ) membranes. A functional analysis of zyxin in EMT reveals its role in regulating disruption of actin membrane linkages at cell–cell junctions, altering cells' ability to fully detach and migrate independently during EMT. Expression of a constitutively active zyxin mutant results in persistent actin‐membrane linkages and cell migration without loss of cell–cell adhesion. We propose zyxin functions in morphogenetic rearrangements, maintaining collective migration by transducing individual cells' movements through AJs, thus preventing the dissociation of individual migratory cells. J. Cell. Physiol. 222: 612–624, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
86.
Insect and pollinator populations are vitally important to the health of ecosystems, food production, and economic stability, but are declining worldwide. New, cheap, and simple monitoring methods are necessary to inform management actions and should be available to researchers around the world. Here, we evaluate the efficacy of a commercially available, close‐focus automated camera trap to monitor insect–plant interactions and insect behavior. We compared two video settings—scheduled and motion‐activated—to a traditional human observation method. Our results show that camera traps with scheduled video settings detected more insects overall than humans, but relative performance varied by insect order. Scheduled cameras significantly outperformed motion‐activated cameras, detecting more insects of all orders and size classes. We conclude that scheduled camera traps are an effective and relatively inexpensive tool for monitoring interactions between plants and insects of all size classes, and their ease of accessibility and set‐up allows for the potential of widespread use. The digital format of video also offers the benefits of recording, sharing, and verifying observations.  相似文献   
87.
Although cavitation and refilling cycles could be common in plants, it is unknown whether these cycles weaken the cavitation resistance of xylem. Stem or petiole segments were tested for cavitation resistance before and after a controlled cavitation-refilling cycle. Cavitation was induced by centrifugation, air drying of shoots, or soil drought. Except for droughted plants, material was not significantly water stressed prior to collection. Cavitation resistance was determined from "vulnerability curves" showing the percentage loss of conductivity versus xylem pressure. Two responses were observed. "Resilient" xylem (Acer negundo and Alnus incana stems) showed no change in cavitation resistance after a cavitation-refilling cycle. In contrast, "weakened" xylem (Populus angustifolia, P. tremuloides, Helianthus annuus stems, and Aesculus hippocastanum petioles) showed considerable reduction in cavitation resistance. Weakening was observed whether cavitation was induced by centrifugation, air dehydration, or soil drought. Observations from H. annuus showed that weakening was proportional to the embolism induced by stress. Air injection experiments indicated that the weakened response was a result of an increase in the leakiness of the vascular system to air seeding. The increased air permeability in weakened xylem could result from rupture or loosening of the cellulosic mesh of interconduit pit membranes during the water stress and cavitation treatment.  相似文献   
88.
We studied 15 riparian and upland Sonoran desert species to evaluate how the limitation of xylem pressure (Ψ(x)) by cavitation corresponded with plant distribution along a moisture gradient. Riparian species were obligate riparian trees (Fraxinus velutina, Populus fremontii, and Salix gooddingii), native shrubs (Baccharis spp.), and an exotic shrub (Tamarix ramosissima). Upland species were evergreen (Juniperus monosperma, Larrea tridentata), drought-deciduous (Ambrosia dumosa, Encelia farinosa, Fouquieria splendens, Cercidium microphyllum), and winter-deciduous (Acacia spp., Prosopis velutina) trees and shrubs. For each species, we measured the "vulnerability curve" of stem xylem, which shows the decrease in hydraulic conductance from cavitation as a function of Ψ(x) and the Ψ(crit) representing the pressure at complete loss of transport. We also measured minimum in situ Ψ(x)(Ψ(xmin)) during the summer drought. Species in desert upland sites were uniformly less vulnerable to cavitation and exhibited lower Ψ(xmin) than riparian species. Values of Ψ(crit) were correlated with minimum Ψ(x). Safety margins (Ψ(xmin)-Ψ(crit)) tended to increase with decreasing Ψ(xmin) and were small enough that the relatively vulnerable riparian species could not have conducted water at the Ψ(x) experienced in upland habitats (-4 to -10 MPa). Maintenance of positive safety margins in riparian and upland habitats was associated with minimal to no increase in stem cavitation during the summer drought. The absence of less vulnerable species from the riparian zone may have resulted in part from a weak but significant trade-off between decreasing vulnerability to cavitation and conducting efficiency. These data suggest that cavitation vulnerability limits plant distribution by defining maximum drought tolerance across habitats and influencing competitive ability of drought tolerant species in mesic habitats.  相似文献   
89.
Wood structure and function of juvenile wood from 18 conifer species from four conifer families (Araucariaceae, Cupressaceae, Pinaceae and Podocarpaceae) were examined for a trade-off between wood reinforcement and hydraulic efficiency. Wood density and tracheid 'thickness-to-span' ratio were used as anatomical proxies for mechanical properties. The thickness:span represented the ratio of tracheid double wall thickness to lumen diameter. Hydraulic resistivity (R) of tracheids on a cross-sectional area basis (RCA) increased over 50-fold with increasing density and thickness:span, implying a strength versus efficiency conflict. The conflict arose because density and thickness:span were increased by narrowing tracheid diameter rather than by thickening walls, which may be developmentally difficult. In the Pinaceae and Cupressaceae species, density and thickness:span correlated strongly with protection from drought-induced embolism, suggesting that mechanical strength was required in part to withstand tracheid collapse by negative sap pressure. These species showed a corresponding trade-off between increasing RCA and embolism protection. In contrast, species of Podocarpaceae and Araucariaceae were overbuilt for their embolism protection and were hydraulically inefficient, having greater density, thickness:span and RCA, none of which were correlated with vulnerability to embolism.  相似文献   
90.
Prenyltransferase activity derived from the corpora allata (CA) of the lepidopteran insect, Manduca sexta, has been characterized. The coupling of allylic substrates DMAPP and GPP with the non-allylic substrate IPP was evaluated using CA homogenates of both the larval and adult stages of development. The effect of additives and inhibitors, assay conditions, and metal preference were examined. The cellular location of prenyltransferase activity was also investigated. We found subtle differences between larval and adult preparations, including metal and detergent preference, and while larval prenyltransferase activity was strictly cytosolic, prenyltransferase derived from adult CA was found in both the cytosolic and pellet fractions. Differences in kinetics as a function of development were also noted. When GPP was utilized as allylic substrate, adult prenyltransferase displayed cooperative behavior; while with DMAPP, biphasic kinetics were observed. In fifth instar larvae, prenyltransferase activity was highest on days 1-2 and reaction end products changed as a result of insect age. Taken together, these results suggest that larval and adult prenyltransferase of M. sexta have distinct enzymological properties and that the adult CA possess more than one prenyltransferase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号