首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   27篇
  352篇
  2022年   4篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   7篇
  2016年   9篇
  2015年   14篇
  2014年   23篇
  2013年   23篇
  2012年   26篇
  2011年   18篇
  2010年   13篇
  2009年   19篇
  2008年   12篇
  2007年   18篇
  2006年   17篇
  2005年   10篇
  2004年   8篇
  2003年   9篇
  2002年   8篇
  2001年   16篇
  2000年   12篇
  1999年   6篇
  1998年   11篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1973年   2篇
  1971年   2篇
  1967年   1篇
排序方式: 共有352条查询结果,搜索用时 15 毫秒
31.

Background

Abnormalities of vascular smooth muscle cells (VSMCs) contribute to development of vascular disease. Atrial natriuretic peptide (ANP) exerts important effects on VSMCs. A common ANP molecular variant (T2238C/αANP) has recently emerged as a novel vascular risk factor.

Objectives

We aimed at identifying effects of CC2238/αANP on viability, migration and motility in coronary artery SMCs, and the underlying signaling pathways.

Methods and Results

Cells were exposed to either TT2238/αANP or CC2238/αANP. At the end of treatment, cell viability, migration and motility were evaluated, along with changes in oxidative stress pathway (ROS levels, NADPH and eNOS expression), on Akt phosphorylation and miR21 expression levels. CC2238/αANP reduced cell vitality, increased apoptosis and necrosis, increased oxidative stress levels, suppressed miR21 expression along with consistent changes of its molecular targets (PDCD4, PTEN, Bcl2) and of phosphorylated Akt levels. As a result of increased oxidative stress, CC2238/αANP markedly stimulated cell migration and increased cell contraction. NPR-C gene silencing with specific siRNAs restored cell viability, miR21 expression, and reduced oxidative stress induced by CC2238/αANP. The cAMP/PKA/CREB pathway, driven by NPR-C activation, significantly contributed to both miR21 and phosphoAkt reduction upon CC2238/αANP. miR21 overexpression by mimic-hsa-miR21 rescued the cellular damage dependent on CC2238/αANP.

Conclusions

CC2238/αANP negatively modulates viability through NPR-C/cAMP/PKA/CREB/miR21 signaling pathway, and it augments oxidative stress leading to increased migratory and vasoconstrictor effects in coronary artery SMCs. These novel findings further support a damaging role of this common αANP variant on vessel wall and its potential contribution to acute coronary events.  相似文献   
32.

Background  

Text-mining can assist biomedical researchers in reducing information overload by extracting useful knowledge from large collections of text. We developed a novel text-mining method based on analyzing the network structure created by symbol co-occurrences as a way to extend the capabilities of knowledge extraction. The method was applied to the task of automatic gene and protein name synonym extraction.  相似文献   
33.
Glucosidase I is an important enzyme in N-linked glycoprotein processing, removing specifically distal alpha-1,2-linked glucose from the Glc3Man9GlcNAc2 precursor after its en bloc transfer from dolichyl diphosphate to a nascent polypeptide chain in the endoplasmic reticulum. We have identified a glucosidase I defect in a neonate with severe generalized hypotonia and dysmorphic features. The clinical course was progressive and was characterized by the occurrence of hepatomegaly, hypoventilation, feeding problems, seizures, and fatal outcome at age 74 d. The accumulation of the tetrasaccharide Glc(alpha1-2)Glc(alpha1-3)Glc(alpha1-3)Man in the patient's urine indicated a glycosylation disorder. Enzymological studies on liver tissue and cultured skin fibroblasts revealed a severe glucosidase I deficiency. The residual activity was <3% of that of controls. Glucosidase I activities in cultured skin fibroblasts from both parents were found to be 50% of those of controls. Tissues from the patient subjected to SDS-PAGE followed by immunoblotting revealed strongly decreased amounts of glucosidase I protein in the homogenate of the liver, and a less-severe decrease in cultured skin fibroblasts. Molecular studies showed that the patient was a compound heterozygote for two missense mutations in the glucosidase I gene: (1) one allele harbored a G-->C transition at nucleotide (nt) 1587, resulting in the substitution of Arg at position 486 by Thr (R486T), and (2) on the other allele a T-->C transition at nt 2085 resulted in the substitution of Phe at position 652 by Leu (F652L). The mother was heterozygous for the G-->C transition, whereas the father was heterozygous for the T-->C transition. These base changes were not seen in 100 control DNA samples. A causal relationship between the alpha-glucosidase I deficiency and the disease is postulated.  相似文献   
34.
35.
This investigation examined the exposure of Egyptian infants to Aflatoxin M1 (AfM1) and of lactating mothers to Aflatoxin B1, using AfM1 in human milk as a biomarker for exposure to AfB1. The presence of ochratoxin A (OA) in human milk was also investigated to determine the levels of infants exposure to OA from human milk. The results indicated that AfM1 was found in 66 (55 %) of 120 human milk samples with a mean of 0.3 ± 0.53 ng/mL (range 0.02 to 2.09 ng/mL). OA was found in 43 (35.8 %) of 120 human milk samples with a mean of 21.1 ± 13.7 ng/mL (range 5.07 to 45.01 ng/mL), which will cause a daily intake of OA from human milk exceeding the suggested tolerable dose of 5 ng/kg-1 of OA body weight. On the other side AfM1 was found in 25 % of blood samples (5 out of 20 samples), at a mean of 1.18 ng/mL, but it was detected only in one urine sample (1 out of 20 samples). OA was detected only in 2 out of 13 blood samples (15.4 %) with an average 3.67 ng/mL. Whereas OA was not detected in all analyzed urine samples.  相似文献   
36.

Background

Toll like receptors (TLR) play the central role in the recognition of pathogen associated molecular patterns (PAMPs). Mutations in the TLR1, TLR2 and TLR4 genes may change the ability to recognize PAMPs and cause altered responsiveness to the bacterial pathogens.

Results

The study presents association between TLR gene mutations and increased susceptibility to Mycobacterium avium subsp. paratuberculosis (MAP) infection. Novel mutations in TLR genes (TLR1- Ser150Gly and Val220Met; TLR2 – Phe670Leu) were statistically correlated with the hindrance in recognition of MAP legends. This correlation was confirmed subsequently by measuring the expression levels of cytokines (IL-4, IL-8, IL-10, IL-12 and IFN-γ) in the mutant and wild type moDCs (mocyte derived dendritic cells) after challenge with MAP cell lysate or LPS. Further in silico analysis of the TLR1 and TLR4 ectodomains (ECD) revealed the polymorphic nature of the central ECD and irregularities in the central LRR (leucine rich repeat) motifs.

Conclusion

The most critical positions that may alter the pathogen recognition ability of TLR were: the 9th amino acid position in LRR motif (TLR1–LRR10) and 4th residue downstream to LRR domain (exta-LRR region of TLR4). The study describes novel mutations in the TLRs and presents their association with the MAP infection.  相似文献   
37.
Mitochondrial ribosomal RNA coding regions in the only three green algal taxa investigated to date are fundamentally different in that they are continuous in Prototheca wickerhamii, but highly fragmented and scrambled in Chlamydomonas reinhardtii and Chlamydomonas eugametos. To gain more insight into the mode of evolution of fragmented and scrambled mitochondrial ribosomal RNA (rRNA) genes within the green algal group, this work (1) provides additional information on fragmentation patterns of mitochondrial small- and large-subunit (SSU and LSU) rRNAs that strongly supports the concept of a gradual increase in the extent of discontinuity of mitochondrial rRNAs among chlorophycean green algae and (2) reports the first example of fragmented and scrambled mitochondrial LSU rRNA coding regions in a green algal taxon outside the Chlamydomonas group. The present study (1) suggests that the scrambling of the mitochondrial rRNA coding regions may have occurred early in the evolution of fragmented and scrambled mitochondrial rRNA genes within the chlorophycean green algal group, most likely in parallel with the fragmentation events, (2) proposes recombination as a possible mechanism involved in the evolution of these mitochondrial rRNA genes, and (3) presents a hypothetical pathway for converting continuous mitochondrial rRNA genes into the highly fragmented and scrambled rRNA coding regions of Chlamydomonas through a series of recombinatorial events between short repeated sequences.   相似文献   
38.
Trans-splicing is an unusual process in which two separate RNA strands are spliced together to yield a mature mRNA. We present a novel computational approach which has an overall accuracy of 82% and can predict 92% of known trans-splicing sites. We have applied our method to chromosomes 1 and 3 of Leishmania major, with high-confidence predictions for 85% and 88% of annotated genes respectively. We suggest some extensions of our method to other systems.  相似文献   
39.
The influence of seed dispersers on the evolution of fruit traits remains controversial, largely because most studies have failed to account for phylogeny and or have focused on conservative taxonomic levels. Under the hypothesis that fruit traits have evolved in response to different sets of selective pressures by disparate types of seed dispersers (the dispersal syndromes hypothesis), we test for two dispersal syndromes, defined as groups of fruit traits that appear together more often than expected by chance. (1) Bird syndrome fruits are brightly colored and small, because birds have acute color vision, and commonly swallow fruits whole. (2) Mammal syndrome fruits are dull-colored and larger on average than bird syndrome fruits, because mammals do not rely heavily on visual cues for finding fruits, and can eat fruits piecemeal. If, instead, phylogenetic inertia determines the co-occurrence of fruit size and color, we will observe that specific combinations of size and color evolved in a small number of ancestral species. We performed a comparative analysis of fruit traits for 64 species of Ficus (Moraceae), based on a phylogeny we constructed using nuclear ribosomal DNA. Using a concentrated changes test and assuming fruit color is an independent variable, we found that small-sized fruits evolve on branches with red and purple figs, as predicted by the dispersal syndromes hypothesis. When using diameter as the independent variable, results vary with the combination of algorithms used, which is discussed in detail. A likelihood ratio test confirms the pattern found with the concentrated changes test using color as the independent variable. These results support the dispersal syndromes hypothesis.  相似文献   
40.
Abstract Several studies have demonstrated that Bordetella pertussis has the ability to enter and survive intracellularly within human polymorphonuclear leukocytes (PMNL) and human monocytes/macrophages. The effects of human recombinant gamma interferon (IFN-γ) on the survival of B. pertussis in PMNL and human monocytes, and on the oxidative burst activity of PMNL and human monocytes in response to B. pertussis were assessed in this study. IFN-γ partially increased intracellular killing of phagocytosed B. pertussis in human monocytes, as determined by an orange acridine-crystal violet assay. In contrast, IFN-γ did not enhance intracellular killing of B. pertussis in PMNL. No significant increase of superoxide production was noted in human monocytes in response to B. pertussis when stimulated with various concentrations of IFN-γ. The partial increase of B. pertussis killing by IFN-γ within monocytes, together with poor production of superoxide may explain how B. pertussis can survive within human phagocytic cells, and thus cause a more prolonged course of the disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号