首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   19篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   6篇
  2013年   3篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   7篇
  2004年   7篇
  2003年   7篇
  2002年   2篇
  2001年   6篇
  2000年   8篇
  1999年   4篇
  1998年   9篇
  1997年   2篇
  1996年   4篇
  1995年   7篇
  1994年   7篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   8篇
  1987年   2篇
  1986年   1篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
71.
The rhizobial nodulation gene nodC encodes an N-acetylglucosaminyltransferase that is responsible for the synthesis of chitin oligosaccharides. These oligosaccharides are precursors for the synthesis of the lipo-chitin oligosaccharides that induce cell division and differentiation during the development of nitrogen-fixing root nodules in leguminous plants. The NodC proteins of Mesorhizobium loti and Sinorizobium meliloti yield chitinpentaose and chitintetraose as their main products, respectively. In order to localize regions in these enzymes that are responsible for this difference in product chain length, a set of six chimeric enzymes, comprising different combinations of regions of the NodC proteins from these two bacteria, was expressed in Escherichia coli. The oligosaccharides produced were analyzed using thin-layer chromatography. The major conclusion from this work is that a central 91-amino acid segment does not play any obvious role in determining the difference in the chain length of the major product. Furthermore, the characteristically predominant synthesis of chitintetraose by S. meliloti NodC is mainly dependent on a C-terminal region of maximally 164 amino acids; exchange of only this C-terminal region is sufficient to completely convert the M. loti chitinpentaose synthase into an S. meliloti-like chitintetraose synthase. The N-terminal region of 170 amino acids also plays a role in restricting the length of the major product to a tetramer. However, the role of the C-terminal region is clearly dominant, since exchanging the N-terminal region has no effect on the relative amounts of chitintetraose and -pentaose produced when the C-terminal region of S. meliloti NodC is present. The length of a predicted beta-strand around residue 300 in the C-terminal region of various NodC proteins is the only structural element that seems to be related to the length of the chitin oligosaccharides produced by these enzymes; the higher the amount of chitintetraose relative to chitinpentaose, the shorter the predicted beta-strand. This element may therefore be important for the effect of the C-terminal 164 amino acids on chitin oligosaccharide chain length.  相似文献   
72.
The large extracellular polysaccharide Hyaluronan (HA) and its synthesizing enzymes (Has) have been implicated in regulating the migratory potential of metastatic cancer cells. Here, we analyze the roles of zebrafish Has2 in normal development. Antisense morpholino oligonucleotide (MO)-mediated knockdown of zebrafish Has2 leads to the loss of HA, and severe migratory defects during gastrulation, somite morphogenesis and primordial germ cell migration. During gastrulation, ventrolateral cells of has2 morphant embryos fail to develop lamellipodia and to migrate dorsally, resulting in a blockage of dorsal convergence, whereas extension of the dorsal axis is normal. The effect is cell autonomous, suggesting that HA acts as an autocrine signal to stimulate the migration of HA-generating cells. Upon ectopic expression in axial cells, has2 causes the formation of supernumerary lamellipodia and a blockage of axis extension. Epistasis analyses with constitutively active and dominant-negative versions of the small GTPase Rac1 suggest that HA acts by Rac1 activation, rather than as an essential structural component of the extracellular matrix. Together, our data provide evidence that convergence and extension are separate morphogenetic movements of gastrulation. In addition, they suggest that the same HA pathways are active to auto-stimulate cell migration during tumor invasion and vertebrate embryogenesis.  相似文献   
73.
74.
75.
76.
Division of cortical cells in roots of leguminous plants is triggered by lipochitin oligosaccharides (LCOs) secreted by the rhizobial microsymbiont. Previously, we have shown that presence of pea lectin in transgenic white clover hairy roots renders these roots susceptible to induction of root nodule formation by pea-specific rhizobia (C. L. Díaz, L. S. Melchers, P. J. J. Hooykaas, B. J. J. Lugtenberg, and J. W. Kijne, Nature 338:579-581, 1989). Here, we report that pea lectin-transformed red clover hairy roots form nodule primordium-like structures after inoculation with pea-, alfalfa-, and Lotus-specific rhizobia, which normally do not nodulate red clover. External application of a broad range of purified LCOs showed all of them to be active in induction of cortical cell divisions and cell expansion in a radial direction, resulting in formation of structures that resemble nodule primordia induced by clover-specific rhizobia. This activity was obvious in about 50% of the red clover plants carrying hairy roots transformed with the pea lectin gene. Also, chitopentaose, chitotetraose, chitotriose, and chitobiose were able to induce cortical cell divisions and cell expansion in a radial direction in transgenic roots, but not in control roots. Sugar-binding activity of pea lectin was essential for its effect. These results show that transformation of red clover roots with pea lectin results in a broadened response of legume root cortical cells to externally applied potentially mitogenic oligochitin signals.  相似文献   
77.
78.
Following abiotic stress to induce barley (Hordeum vulgare L.) androgenesis, the development of 794 enlarged microspores in culture was monitored by time-lapse tracking. In total, 11% of the microspores tracked developed into embryo-like structures (type-I pathway), 36% formed multicellular structures (type-II pathway) and 53% of the microspores followed gametophytic divisions, accumulated starch and died in the first days of tracking (type-III pathway). Despite the microspore fate, enlarged microspores showed similar morphologies directly after stress treatment. Ultrastructural analysis, however, revealed two morphologically distinct cell types. Cells with a thin intine layer and an undifferentiated cytoplasm after stress treatment were associated with type-I and type-II pathways, whereas the presence of differentiated amyloplasts and a thick intine layer were associated with the type-III pathway. Tracking revealed that the first morphological change associated with embryogenic potential was a star-like morphology, which was a transitory stage between uninucleate vacuolated microspores after stress and the initiation of cell division. The difference between type-I and type-II pathways was observed during the time they displayed the star-like morphology. During the transition phase, embryo-like structures in the type-I pathway were always released out of the exine wall at the opposite side of the pollen germ pore, whereas in the type-II pathway multicellular structures were unable to break the exine and to release embryo-like structures. Moreover, by combining viability studies with cell tracking, we show that release of embryo-like structures was preceded by a decrease in viability of the cells positioned at the site of exine wall rupture. These cells were also positively stained by Sytox orange, a cell death indicator. Thereby, we demonstrate, for the first time, that a position-determined cell death process marks the transition from a multicellular structure into an embryo-like structure during barley androgenesis.  相似文献   
79.
In the symbiosis of leguminous plants and Rhizobium bacteria, nodule primordia develop in the root cortex. This can be either in the inner cortex (indeterminate-type of nodulation) or outer cortex (determinate-type of nodulation), depending upon the host plant. We studied and compared early nodulation stages in common bean (Phaseolus vulgaris) and Lotus japonicus, both known as determinate-type nodulation plants. Special attention was paid to the occurrence of cytoplasmic bridges, the influence of rhizobial Nod factors (lipochitin oligosaccharides [LCOs]) on this phenomenon, and sensitivity of the nodulation process to ethylene. Our results show that i) both plant species form initially broad, matrix-rich infection threads; ii) cytoplasmic bridges occur in L. japonicus but not in bean; iii) formation of these bridges is induced by rhizobial LCOs; iv) formation of primordia starts in L. japonicus in the middle root cortex and in bean in the outer root cortex; and v) in the presence of the ethylene-biosynthesis inhibitor aminoethoxyvinylglycine (AVG), nodulation of L. japonicus is stimulated when the roots are grown in the light, which is consistent with the role of cytoplasmic bridges during nodulation of L. japonicus.  相似文献   
80.
NodA controls transfer of a fatty acid in the biosynthesis of lipochitin oligosaccharides by rhizobia. In an in vitro assay, we used de-N-acetylated chitin oligosaccharides substituted with an O-acetyl moiety as acyl acceptor substrates. We show that acyl-acyl carrier protein is used as a donor in NodA-directed fatty acid transfer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号