首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   7篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1998年   2篇
  1997年   4篇
  1995年   2篇
排序方式: 共有56条查询结果,搜索用时 0 毫秒
51.
The Red Queen coevolutionary hypothesis predicts that parasites drive oscillations in host genotype frequencies due to frequency-dependent selection where common hosts are at disadvantage. However, examples of this phenomenon in natural populations are scarce. To examine if the Red Queen theory operates in the wild, we studied the genetic structure of populations of the crustacean waterflea ( Daphnia ), in relation to their infection levels, for which we collected multiple samples from a variety of lakes. The most common clone in a given population was often underinfected. This advantage, however, did not remain stable over time. Instead, the most common clone decreased in frequency over subsequent generations, indicating that parasites can track common clones. Such decreases were not observed in uninfected populations. Moreover, host clonal evenness was higher across the set of infected lakes compared to uninfected lakes; suggesting that any common clone is selected against when parasites are present. These results strongly suggest that Red Queen dynamics do operate in the wild.  相似文献   
52.
SUMMARY 1. The ultimate explanation for diel vertical migration (DVM) of zooplankton is the avoidance of visual predation in surface waters. Studies on migrating zooplankton have shown that remaining in the cold and food-poor hypolimnion during the day, however, has demographic costs. Higher temperatures and greater food concentrations in the surface waters are thought to be the main reasons why Daphnia species move upwards at night.
2. In this study, we investigated the growth condition of daphniids raised on seston taken from different depths from a lake with and without a deep-water chlorophyll maximum.
3. Juvenile growth rates of Daphnia galeata x hyalina from the lake without a deep-water chlorophyll maximum were similar for all treatments. After temperature correction, however, growth rates were significantly higher on seston taken from the surface layers.
4. In contrast, in the lake with the deep-water chlorophyll maximum, D. galeata growth rates were higher in deeper strata, even after temperature correction. Although this lake had a weak temperature gradient, D. galeata left the food-rich strata at night and migrated into the surface food-poor environment. Invertebrate predation and oxygen depletion are probably not the reasons for the nocturnal upward migration into the surface strata. Therefore, we assume that D. galeata migrates upwards to take advantage of higher temperatures. Using several temperature–egg-development models, we could not, however, fully explain this behaviour.  相似文献   
53.
Parasite environments are heterogeneous at different levels. The first level of variability is the host itself. The second level represents the external environment for the hosts, to which parasites may be exposed during part of their life cycle. Both levels are expected to affect parasite fitness traits. We disentangle the main and interaction effects of variation in the immediate host environment, here the diatom Asterionella formosa (variables host cell volume and host condition through herbicide pre-exposure) and variation in the external environment (variables host density and acute herbicide exposure) on three fitness traits (infection success, development time and reproductive output) of a chytrid parasite. Herbicide exposure only decreased infection success in a low host density environment. This result reinforces the hypothesis that chytrid zoospores use photosynthesis-dependent chemical cues to locate its host. At high host densities, chemotaxis becomes less relevant due to increasing chance contact rates between host and parasite, thereby following the mass-action principle in epidemiology. Theoretical support for this finding is provided by an agent-based simulation model. The immediate host environment (cell volume) substantially affected parasite reproductive output and also interacted with the external herbicide exposed environment. On the contrary, changes in the immediate host environment through herbicide pre-exposure did not increase infection success, though it had subtle effects on zoospore development time and reproductive output. This study shows that both immediate host and external environment as well as their interaction have significant effects on parasite fitness. Disentangling these effects improves our understanding of the processes underlying parasite spread and disease dynamics.  相似文献   
54.
Hybridization following secondary contact of genetically divergent populations can influence the range expansion of invasive species, though specific outcomes depend on the environmental dependence of hybrid fitness. Here, using two genetically and ecologically divergent threespine stickleback lineages that differ in their history of freshwater colonization, we estimate fitness variation of parental lineages and hybrids in semi-natural freshwater ponds with contrasting histories of nutrient loading. In our experiment, we found that fish from the older freshwater lineage (Lake Geneva) and hybrids outperformed fish from the younger freshwater lineage (Lake Constance) in terms of both growth and survival, regardless of the environmental context of our ponds. Across all ponds, hybrids exhibited the highest survival. Although wild-caught adult populations differed in their functional and defence morphology, it is unclear which of these traits underlie the fitness differences observed among juveniles in our experiment. Overall, our work suggests that when hybrid fitness is insensitive to environmental conditions, as observed here, introgression may promote population expansion into unoccupied habitats and accelerate invasion success.  相似文献   
55.
Preface     
  相似文献   
56.
We studied the combined effect of fish kairomones and food conditions on the relative tail spine length (RTL) of five Daphnia taxa, and the interaction of these factors with the vertical distribution of the daphnids. The experiment was done in two large-scale indoor containers, the so-called plankton towers in Plön, Germany. We conducted a competition experiment in which food level and the presence of fish chemicals and later fish were varied. A strong response of RTL to fish kairomones (e.g., longer tail spines), significant differences in RTL between species, but no differences in RTL with water depth were found. Further, we observed that these Daphnia taxa produced a higher RTL only under high food conditions. This suggests that there is a cost related to the production of longer tail spines.In a preliminary study in lake Plußsee, we found that Daphnia had longer average RTL than in the towers. Further, we noted significant differences in RTL between the two sampling dates, which may be related to a lower food level. We also detected a strong inverse correlation between RTL and depth. We discuss the implications of these findings for the co-existence of co-occurring Daphnia species and their hybrids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号