首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   15篇
  170篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2017年   5篇
  2015年   7篇
  2014年   3篇
  2013年   14篇
  2012年   13篇
  2011年   5篇
  2010年   7篇
  2009年   5篇
  2008年   8篇
  2007年   6篇
  2006年   2篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   3篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1985年   5篇
  1984年   6篇
  1983年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1972年   3篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1966年   2篇
  1964年   1篇
  1961年   1篇
  1940年   1篇
排序方式: 共有170条查询结果,搜索用时 0 毫秒
81.
82.
All-trans-retinol reacts with methyl (2,3,4-tri-O-acetyl-1-bromo-1-deoxy-beta-D-glucopyran)uronate in the presence of Ag2CO3 to give the triacetate methyl ester of retinyl beta-glucuronide. Hydrolysis of this ester with sodium methylate in methanol gives retinyl beta-D-glucuronide in about 15% yield. The water-soluble retinyl beta-D-glucuronide was characterized by u.v.-visible, n.m.r. and mass spectra, by elemental analysis and by its susceptibility to hydrolysis by bacterial beta-glucuronidase. Retinyl beta-glucuronide, when administered intraperitoneally in saline (0.9% NaCl), supports well the growth of vitamin A-deficient rats.  相似文献   
83.
The capacities ofHalobacterium cutirubrum and a moderate halophile NRC 41227 to survive and recover from treatment with N-methyl-N-nitro-N-nitrosoguanidine have been compared.Halobacterium cutirubrum is resistant to this chemical and its mutation frequency is only slightly affected, whereas NRC 41227 is highly sensitive and its mutation frequency is markedly increased. The chemically treated extreme halophile fully regains viability during liquid holding, in notable contrast to its known failure to recover from the effects of ultraviolet irradiation.  相似文献   
84.
Most cell surface receptors for growth factors and cytokines dimerize in order to mediate signal transduction. For many such receptors, the Janus kinase (Jak) family of non-receptor protein tyrosine kinases are recruited in pairs and juxtaposed by dimerized receptor complexes in order to activate one another by trans-phosphorylation. An alternative mechanism for Jak trans-phosphorylation has been proposed in which the phosphorylated kinase interacts with the Src homology 2 (SH2) domain of SH2-B, a unique adaptor protein with the capacity to homo-dimerize. Building on a rule-based kinetic modeling approach that considers the concerted nature and combinatorial complexity of modular protein domain interactions, we examine these mechanisms in detail, focusing on the growth hormone (GH) receptor/Jak2/SH2-Bβ system. The modeling results suggest that, whereas Jak2-(SH2-Bβ)2-Jak2 heterotetramers are scarcely expected to affect Jak2 phosphorylation, SH2-Bβ and dimerized receptors synergistically promote Jak2 trans-activation in the context of intracellular signaling. Analysis of the results revealed a unique mechanism whereby SH2-B and receptor dimers constitute a bipolar ‘clamp’ that stabilizes the active configuration of two Jak2 molecules in the same macro-complex.  相似文献   
85.
In colorectal cancer cells, APC, a tumor suppressor protein, is commonly expressed in truncated form. Truncation of APC is believed to disrupt degradation of β—catenin, which is regulated by a multiprotein complex called the destruction complex. The destruction complex comprises APC, Axin, β—catenin, serine/threonine kinases, and other proteins. The kinases and , which are recruited by Axin, mediate phosphorylation of β—catenin, which initiates its ubiquitination and proteosomal degradation. The mechanism of regulation of β—catenin degradation by the destruction complex and the role of truncation of APC in colorectal cancer are not entirely understood. Through formulation and analysis of a rule-based computational model, we investigated the regulation of β—catenin phosphorylation and degradation by APC and the effect of APC truncation on function of the destruction complex. The model integrates available mechanistic knowledge about site-specific interactions and phosphorylation of destruction complex components and is consistent with an array of published data. We find that the phosphorylated truncated form of APC can outcompete Axin for binding to β—catenin, provided that Axin is limiting, and thereby sequester β—catenin away from Axin and the Axin-recruited kinases and . Full-length APC also competes with Axin for binding to β—catenin; however, full-length APC is able, through its SAMP repeats, which bind Axin and which are missing in truncated oncogenic forms of APC, to bring β—catenin into indirect association with Axin and Axin-recruited kinases. Because our model indicates that the positive effects of truncated APC on β—catenin levels depend on phosphorylation of APC, at the first 20-amino acid repeat, and because phosphorylation of this site is mediated by , we suggest that is a potential target for therapeutic intervention in colorectal cancer. Specific inhibition of is predicted to limit binding of β—catenin to truncated APC and thereby to reverse the effect of APC truncation.  相似文献   
86.
Seasonal germination timing of Arabidopsis thaliana strongly influences overall life history expression and is the target of intense natural selection. This seasonal germination timing depends strongly on the interaction between genetics and seasonal environments both before and after seed dispersal. DELAY OF GERMINATION 1 (DOG1) is the first gene that has been identified to be associated with natural variation in primary dormancy in A. thaliana. Here, we report interaccession variation in DOG1 expression and document that DOG1 expression is associated with seed‐maturation temperature effects on germination; DOG1 expression increased when seeds were matured at low temperature, and this increased expression was associated with increased dormancy of those seeds. Variation in DOG1 expression suggests a geographical structure such that southern accessions, which are more dormant, tend to initiate DOG1 expression earlier during seed maturation and achieved higher expression levels at the end of silique development than did northern accessions. Although elimination of the synthesis of phytohormone abscisic acid (ABA) results in the elimination of maternal temperature effects on dormancy, DOG1 expression predicted dormancy better than expression of genes involved in ABA metabolism.  相似文献   
87.
88.
In order to prove the hypothesis that humans and animals with adequate vitamin A status do not absorb and metabolize orally administered all-trans retinoyl β-glucuronide, unlabeled retinoyl glucuronide (0.1 mmol) was orally dosed to fasting well-nourished young men. Neither retinoyl glucuronide nor retinoic acid, a possible metabolite, appeared in the blood within 12 h after ingestion. Next, radiolabeled all-trans 15-[14C]-retinoyl β-glucuronide was chemically synthesized by a new procedure, and fed orally to rats of different vitamin A status. Analysis of blood and other tissues 5 or 24 h after the dose, showed the presence of radioactivity ( 0.5%) in the blood of vitamin A deficient rats, but not in sufficient rats. Livers of all rats contained small, but detectable amounts (0.3 to 1.1% of the dose) of radioactivity. The accumulation of radioactivity in the liver was highest in deficient rats. Analysis of the retinoids showed that the radioactivity in serum and liver was due to retinoic acid formed from retinoyl glucuronide. Within 24 h after the dose, 31 to 40% of the administered radioactivity was excreted in the feces, and 2 to 4.7% of the dose was excreted in the urine. Results of the present studies show that oral administration of retinoyl β-glucuronide did not give rise to detectable changes in blood retinoyl glucuronide and/or retinoic acid concentrations in humans or rats with adequate vitamin A status.  相似文献   
89.
1. Slow, spontaneous lysis of Halobacterium cutirubrum in 3 M-KCl yields DNA-dependent RNA polymerase as a complex with DNA that sediments completely at 45 000g. 2. Controlled deoxyribonuclease digestion of the complex, with or without subsequent sonication, releases the enzyme quantitatively in a soluble form that passes through ultrafilters with a molecular-weight exclusion limit of 50 000. 3. Purification of the active ultrafiltrate by gel filtration and hydroxyapatite chromatography gives a high yield of the purified alpha and beta subunits. 4. The low mol.wt. (17 800-19 000) of the soluble enzyme was confirmed by gel filtration and is unchanged by sonication of the DNA-enzyme complex. 5. A new assay applicable to both forms of the enzyme was developed. 6. The bivalent-cation requirement of the soluble form depends on the buffer concentration. 7. Both the DNA-enzyme complex and the low-molecular-weight soluble forms of the polymerase catalyse formation of short RNA chains only.  相似文献   
90.
Humans are increasing atmospheric CO2, ground-level ozone (O3), and mean and acute high temperatures. Laboratory studies show that elevated CO2 can increase thermotolerance of photosynthesis in C3 plants. O3-related oxidative stress may offset benefits of elevated CO2 during heat-waves. We determined effects of elevated CO2 and O3 on leaf thermotolerance of field-grown Glycine max (soybean, C3). Photosynthetic electron transport (φet) was measured in attached leaves heated in situ and detached leaves heated under ambient CO2 and O3. Heating decreased φet, which O3 exacerbated. Elevated CO2 prevented O3-related decreases during heating, but only increased φet under ambient O3 in the field. Heating decreased chlorophyll and carotenoids, especially under elevated CO2. Neither CO2 nor O3 affected heat-shock proteins. Heating increased catalase (except in high O3) and CulZn-superoxide dismutase (SOD), but not MnSOD; CO2 and O3 decreased catalase but neither SOD. Soluble carbohydrates were unaffected by heating, but increased in elevated CO2. Thus, protection of photosynthesis during heat stress by elevated CO2 occurs in field-grown soybean under ambient O3, as in the lab, and high CO2 limits heat damage under elevated O3, but this protection is likely from decreased photorespiration and stomatal conductance rather than production of heat-stress adaptations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号