首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   693篇
  免费   72篇
  2023年   4篇
  2022年   7篇
  2021年   21篇
  2020年   8篇
  2019年   10篇
  2018年   10篇
  2017年   9篇
  2016年   24篇
  2015年   34篇
  2014年   39篇
  2013年   42篇
  2012年   55篇
  2011年   42篇
  2010年   39篇
  2009年   23篇
  2008年   41篇
  2007年   29篇
  2006年   38篇
  2005年   23篇
  2004年   28篇
  2003年   29篇
  2002年   21篇
  2001年   19篇
  2000年   15篇
  1999年   15篇
  1998年   5篇
  1997年   9篇
  1996年   4篇
  1995年   8篇
  1994年   4篇
  1993年   5篇
  1992年   12篇
  1991年   9篇
  1990年   7篇
  1986年   9篇
  1984年   5篇
  1983年   4篇
  1981年   3篇
  1979年   3篇
  1978年   3篇
  1976年   4篇
  1973年   4篇
  1972年   2篇
  1970年   5篇
  1969年   3篇
  1967年   2篇
  1962年   2篇
  1959年   4篇
  1954年   2篇
  1953年   2篇
排序方式: 共有765条查询结果,搜索用时 15 毫秒
71.
Despite their differential cell tropisms, HIV-1 and HCV dramatically influence disease progression in coinfected patients. Macrophages are important target cells of HIV-1. We hypothesized that secreted HCV core protein might modulate HIV-1 replication. We demonstrate that HCV core significantly enhances HIV-1 replication in human macrophages by upregulating TNF-α and IL-6 via TLR2-, JNK-, and MEK1/2-dependent pathways. Furthermore, we show that TNF-α and IL-6 secreted from HCV core-treated macrophages reactivates monocytic U1 cells latently infected with HIV-1. Our studies reveal a previously unrecognized role of HCV core by enhancing HIV-1 infection in macrophages.  相似文献   
72.
Amelogenin, the major extracellular matrix protein of developing tooth enamel is intrinsically disordered. Through its interaction with other proteins and mineral, amelogenin assists enamel biomineralization by controlling the formation of highly organized enamel crystal arrays. We used circular dichroism (CD), dynamic light scattering (DLS), fluorescence, and NMR spectroscopy to investigate the folding propensity of recombinant porcine amelogenin rP172 following its interaction with SDS, at levels above critical micelle concentration. The rP172‐SDS complex formation was confirmed by DLS, while an increase in the structure moiety of rP172 was noted through CD and fluorescence experiments. Fluorescence quenching analyses performed on several rP172 mutants where all but one Trp was replaced by Tyr at different sequence regions confirmed that the interaction of amelogenin with SDS micelles occurs via the N‐terminal region close to Trp25 where helical segments can be detected by NMR. NMR spectroscopy and structural refinement calculations using CS‐Rosetta modeling confirm that the highly conserved N‐terminal domain is prone to form helical structure when bound to SDS micelles. Our findings reported here reveal interactions leading to significant changes in the secondary structure of rP172 upon treatment with SDS. These interactions may reflect the physiological relevance of the flexible nature of amelogenin and its sequence specific helical propensity that might enable it to structurally adapt with charged and potential targets such as cell surface, mineral, and other proteins during enamel biomineralization. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 525–535, 2014.  相似文献   
73.
The purpose was to compare a mathematical model of oxygen uptake and bioenergetic systems to an experimental protocol. Twelve (N = 12) noncyclists (NC), age (21.8 ± 1.4 years), and 8 (N = 8) cyclists (C), age (30.5 ± 5.7 years), were subjects. All subjects signed an informed consent. Oxygen consumption (VO2, ml·kg?1·min?1) was measured with steady-state VO2 requirements and responses determined using the mathematical model from the following equation: VO2 (WR) = VO2 (rest) + VO2 (unloading pedaling) + α.WR; ΔVO2(t, WR) = ΔVO2 (WR) = [1-e[-(t-td)/tO2]. Exercise means (SD) included the following: VO2NC(WR) = 48.4 (16.6) ml?1·min?1 for NCs and VO2C(WR) = 56.4 (24.95) ml?1·min?1 for Cs ; ΔVO2C(t, WR) = 6:38 ml?1·min?1 for NCs and ΔVO2C(t, WR) = 7.44 ml?1·min?1 for Cs. The correlation between the mathematical model and actual measure was statistically significant (p < 0.01) with a coefficient of r = 0.947. The experimental protocol was significantly associated with the mathematical model. This allows for a quantitative analysis and safe prediction of steady-state oxygen uptake conditions on populations before exposure to exercising conditions. Through more precise analysis of conditions, greater specificity of training may lead to more predictable adaptation outcomes.  相似文献   
74.
Modifying FTY720, an immunosuppressant modulator, led to a new series of well phosphorylated tetralin analogs as potent S1P1 receptor agonists. The stereochemistry effect of tetralin ring was probed, and (?)-(R)-2-amino-2-((S)-6-octyl-1,2,3,4-tetrahydronaphthalen-2-yl)propan-1-ol was identified as a good SphK2 substrate and potent S1P1 agonist with good oral bioavailability.  相似文献   
75.
The development and synthesis of potent p38α MAP kinase inhibitors containing a 2H-quinolizin-2-one platform is described. Evolution of the 2H-quinolizin-2-one series from an early lead to solving off target activity and pharmacokinetic issues is also discussed.  相似文献   
76.
Thimet oligopeptidase (EC 3.4.24.15) and neurolysin (EC 3.4.24.16) are closely related zinc-dependent metallopeptidases that metabolize small bioactive peptides. They cleave many substrates at the same sites, but they recognize different positions on others, including neurotensin, a 13-residue peptide involved in modulation of dopaminergic circuits, pain perception, and thermoregulation. On the basis of crystal structures and previous mapping studies, four sites (Glu-469/Arg-470, Met-490/Arg-491, His-495/Asn-496, and Arg-498/Thr-499; thimet oligopeptidase residues listed first) in their substrate-binding channels appear positioned to account for differences in specificity. Thimet oligopeptidase mutated so that neurolysin residues are at all four positions cleaves neurotensin at the neurolysin site, and the reverse mutations in neurolysin switch hydrolysis to the thimet oligopeptidase site. Using a series of constructs mutated at just three of the sites, it was determined that mutations at only two (Glu-469/Arg-470 and Arg-498/Thr-499) are required to swap specificity, a result that was confirmed by testing the two-mutant constructs. If only either one of the two sites is mutated in thimet oligopeptidase, then the enzyme cleaves almost equally at the two hydrolysis positions. Crystal structures of both two-mutant constructs show that the mutations do not perturb local structure, but side chain conformations at the Arg-498/Thr-499 position differ from those of the mimicked enzyme. A model for differential recognition of neurotensin based on differences in surface charge distribution in the substrate binding sites is proposed. The model is supported by the finding that reducing the positive charge on the peptide results in cleavage at both hydrolysis sites.  相似文献   
77.

Background  

Dengue is a public health problem of global significance for which there is neither an effective antiviral therapy nor a preventive vaccine. It is a mosquito-borne viral disease, caused by dengue (DEN) viruses, which are members of the Flaviviridae family. There are four closely related serotypes, DEN-1, DEN-2, DEN-3 and DEN-4, each of which is capable of causing disease. As immunity to any one serotype can potentially sensitize an individual to severe disease during exposure to a heterologous serotype, the general consensus is that an effective vaccine should be tetravalent, that is, it must be capable of affording protection against all four serotypes. The current strategy of creating tetravalent vaccine formulations by mixing together four monovalent live attenuated vaccine viruses has revealed the phenomenon of viral interference leading to the manifestation of immune responses biased towards a single serotype.  相似文献   
78.
Synaptophysin and synaptobrevin are abundant membrane proteins of neuronal small synaptic vesicles. In mature, differentiated neurons they form the synaptophysin/synaptobrevin (Syp/Syb) complex. Synaptobrevin also interacts with the plasma membrane-associated proteins syntaxin and SNAP25, thereby forming the SNARE complex necessary for exocytotic membrane fusion. The two complexes are mutually exclusive. Synaptobrevin is a C-terminally membrane-anchored protein with one transmembrane domain. While its interaction with its SNARE partners is mediated exclusively by its N-terminal cytosolic region it has been unclear so far how binding to synaptophysin is accomplished. Here, we show that synaptobrevin can be cleaved in its synaptophysin-bound form by tetanus toxin and botulinum neurotoxin B, or by botulinum neurotoxin D, leaving shorter or longer C-terminal peptide chains bound to synaptophysin, respectively. A recombinant, C-terminally His-tagged synaptobrevin fragment bound to nickel beads specifically bound synaptophysin, syntaxin and SNAP25 from vesicular detergent extracts. After cleavage by tetanus toxin or botulinum toxin D light chain, the remaining C-terminal fragment no longer interacted with syntaxin or SNAP 25. In contrast, synaptophysin was still able to bind to the residual C-terminal synaptobrevin cleavage product. In addition, the His-tagged C-terminal synaptobrevin peptide 68-116 was also able to bind synaptophysin in detergent extracts from adult brain membranes. These data suggest that synaptophysin interacts with the C-terminal transmembrane part of synaptobrevin, thereby allowing the N-terminal cytosolic chain to interact freely with the plasma membrane-associated SNARE proteins. Thus, by binding synaptobrevin, synaptophysin may positively modulate neurotransmission.  相似文献   
79.
80.
Clostridial neurotoxins are comprised of botulinum (BoNT) and tetanus (TeNT), which share significant structural and functional similarity. Crystal structures of the binding domain of TeNT complexed with disialyllactose (DiSia) and a tri-peptide Tyr-Glu-Trp (YEW) have been determined to 2.3 and 2.2 A, respectively. Both DiSia and YEW bind in a shallow cleft region on the surface of the molecule in the beta-trefoil domain, interacting with a set of common residues, Asp1147, Asp1214, Asn1216, and Arg1226. DiSia and YEW binding at the same site in tetanus toxin provides a putative site that could be occupied either by a ganglioside moiety or a peptide. Soaking experiments with a mixture of YEW and DiSia show that YEW competes with DiSia, suggesting that YEW can be used to block ganglioside binding. A comparison with the TeNT binding domain in complex with small molecules, BoNT/A and /B, provides insight into the different modes of ganglioside binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号